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PREFACE

Major improvements and numerous additions 
to the CINDA-3G program were

generated under NASA Contract NAS 9-8289, "Development 
of Digital Computer

Program for Thermal Network Correction". The improved program has been

given the acronym SINDA (Systems Improved Numerical 
Differencing Analyzer)

not only to reflect the major changes that have been made but also 
to

indicate the inherent capabilities of the program.

This SINDA User's Manual generated under the NASA contract 
cited

above necessarily draws heavily from the CINDA-3G User's 
Manual; SINDA

has been programmed to accept-the input data of CINDA-3G. 
Major additions

that are described herein are concerned with sensitivity 
analysis and

thermal network correction.

A particular note of interest to users is the 
semi-annual short course

entitled "Workshop in Heat Transfer Computer Programs" offered by the

University of California at Los Angeles Extension. This course which has

provided numerous "workshops" on the use of 
CINDA-3G in the past several

years will be updated to reflect..the present SINDA program.

The monitoring of this NASA program was provided by Mr. R. Dotts;

his helpful suggestions and forthright critiques are gratefully ac-

knowledged. The authors are also indebted to Mrs. Dorothy Gramlich for

suggestions on the document organizations and the typing 
of this manuscript.

T 
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INTRODUCTION

1.1 Background

The original CINDA (Chrysler Improved Numerical Differencing

Analyzer) computer program which was developed by the Thermo-

dynamics Section of the Aerospace Physics Branch of Chrysler

Corporation Space Division at NASA Michoud Assembly Facility was

coded in FORTRAN-II and FAP for the IBM-7094 computers. CINDA was

the result of an intensive analytical, engineering and programming

effort. Numerous thermal analyzer-type programs were surveyed and

several were studied in-depth. The foundation for CINDA was the

storage and addressing of only the information required for the

network solution and the systems features which allowed the

reutilization of core storage area and brought into core only those

instructions necessary for the solution of a particular problem.

A systems compiler computer program that automatically optimized

the utilization of computer core space was developed. This meant

the generation of an integrated operation of relative addressing,

packing features, peripheral tape storage units and overlay

features.

CINDA evolved into CINDA-3G
2 which was developed by the same

group that generated CINDA with a major portion of the work done

under contract NASA/MSC NAS9-7043. CINDA-3G was essentially

rewritten in order to take advantage of the improved systems soft-

ware and machine speeds of the 3rd generation computers. CINDA

was unsuitable for standard operation on third generation computers;

it was virtually a self contained program having its own Update,

Monitor and Compiler. On the other hand, CINDA-3G consisted of a

preprocessor (written in FORTRAN) which accepted the user input

data and converted it into advanced FORTRAN language subroutines

and block data input which was then passed onto the system FORTRAN

Compiler. This required a double pass on data where previously

only one was required but the increased speed and improved software

of the third generation machines more than compensated for the

double pass.

1.2 SINDA

SINDA (Systems Improved Numerical Differencing Analyzer) was

developed by the Heat Transfer and Thermodynamics Department of TRW

Systems Group. The majority of the improvements and subroutine

additions to CINDA-3G was done as part of the NASA/MSC contract

NAS 9-8289 entitled "Development of Digital Computer Program for

Thermal Network Correction." Programming and systems integration

were directed to the UNIVAC-1108 computer..**

* Superscript numbers refer to the references in the Reference Section.

** The UNIVAC-1108 computer at the Jacobi Computation Center, Santa

Monica, California was used in this study in order to insure operation

under the 65K and 131K versions of the EXEC-II operating system

1-1
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SINDA relied quite heavily on CINDA-3G and data deck compati-
bility has been rigorously followed; CINDA-3G data decks should be
directly operational on the SINDA program. The primary differences
between SINDA and CINDA-3G are: (1) elimination wherever possible
of assembly language coding; (2) increased mnemonic options to aid
the program user in data input; (3) inclusion of a second pseudo
computer sequence for evaluation of nonlinear network elements; and
(4) additional subroutines such as STEP (sensitivity analysis) and
KALOBS-KALFIL (Kalman filtering).

SINDA program options offer the user a variety of methods for
solution of thermal analog models presented in a network format. The
network represents a one-to-one correspondence to both the physical
and mathematical models. This analogy facilitates the construction of
mathematical models of complex thermophysical systems and the prepara-
tion of program input. SINDA contains numerous subroutines for handling
interrelated complex phenomena such as sublimation, diffuse radiation
within an enclosure, simultaneous 1-D incompressible fluid flow
including valving and transport delay effects, etc. The optional com-
bination of these capabilities available in SINDA in conjunction with
allowable large model size (greater than 4000 nodes for a linear 3-D
system on 65K core) provides the user with a versatile analytical tool.

2<
1-2
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2. MNEMONICS AND NOTATION

This section was generated to assist the user in identifying the
numerous mnemonic codes and some of the more commonly used notation.
Note that the mnemonic codes that contain interpolation or poly-
nominal are in terms of temperature except as noted.

2.1 Mnemonics

Code Page

BCD Binary Coded Decimal 4-1

BIV Bivariate Interpolation Variable 4-10,4-18

Replaces old DEC code 4-1 ,4-7,4-14

CAL CALculate 4-7,4-14

CGD Code used in CINDA-3G (has been replaced by 4-7

DIV but will be accepted by SINDA) 4-9,4-16

CGS Code used in CINDA-3G (has been replaced by

SIV but will be accepted by S.INDA) 4-8, 4-12,4-15

DIM Double Interpolation Multiple 4-9,4-17

DIT Double Interpolation with Time as Variable 4-12

DIV Double Interpolation Variable (replaces CGD

of CINDA-3G) 4-9,4-16

DPM Double Polynomial Multiple 4-9,4-18

DPV Double Polynomial Variable 4-9, 4-17

DTV Double Interpolation with Time and temperature

as Variables 4-13

END END of a block of input 4-2

GEN GENerate 4-8, 4-11,4-15

LPCS Long Pseudo Compute Sequence 3-10

OCT OCTal word 4-2

REM Serves same function as FORTRAN comment card 4-2

SIM Single Interpolation Multiple 4-8,4-16

SIT Single Interpolation with Time as Variable 4-12

SIV Single Interpolation Variable (replaces CGS of

CINDA-3G) 4-8, 4-12,4-15

SPCS Short Pseudo Compute Sequence 3-10

SPM Single Polynomial Multiple 4-9,4-17

SPV Single Polynomial Variable 4-9,4-17

2-1
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2.2 Notation

A Array address
Area

C Nodal capacitance (=pVCp)

Cp Specific Heat

F Multiplying factor

G Conductor for linear temperature difference
Represents the radiation coefficient for
fourth power temperature difference

G# Conductor number

IG Increment for the generated conductors

IN Node generation increment

INA, INB Increment for the generated adjoining nodes

k Thermal conductivity

K# Address of a constant's location

NA, NB Adjoining node numbers

N# Node number

#G Number of conductors

#N Number of nodes

t Time

T Temperature

Ti Initial Temperature

V Volume

W Factor

x Coordinate

X Factor

y Coordinate

Y Factor

z Coordinate

8 Factor

ci Thermal diffusivity

p Density

22
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3. METHOD OF FINITE DIFFERENCE AND SINDA PROGRAM CONSIDERATIONS

3.1 Method of Finite Difference

3.1.1 Lumped-Parameter Representation

The key to utilizing a network type analysis program lies in the
user's ability to develop a lumped parameter representation of the
physical problem.3 Once this is done, superposition of the network
mesh is a mechanical task at most and the numbering of the network
elements is simple although perhaps tedious. It might be said that
the network representation is a "crutch" for the engineer, but, it
does simplify the data logistics and allow easy preparation of data
input to the program. In addition, it allows the user to uniquely
identify any element in the network and modify its value or function
during the analysis as well as sense any potential or current flow
in the network. Another feature of the network is that it has a
one-to-one correspondence to the mathematical model as well as the
physical model.

The following diagram displays the lumped parameter representation
and network superposition of a one dimensional heat transfer
problem.

Tj G1  T2  G2  T3  G3  T4  G4  T5

1 C2 C3 C4 C5

Figure (3-1)

The "node" points are centrally located within the lumps, and
temperatures T at the nodes are considered uniform throughout the
lump. The capacitors C from the nodes indicate the ability of the
lump to store thermal energy. Capacitance values are calculated
as lump volume times density times specific heat. The conductors
(electrical symbol G) represent the capability for transmitting
thermal energy from one lump to another. Conductor values for
energy transmission through solids are calculated as thermal
conductivity times the energy cross sectional flow area divided
by path length (distance between nodes). Conductor values for
convective heat transfer are calculated as the convection
coefficient times the energy cross sectional flow area. Conductors
representing energy transfer by radiation are usually indicated by
crossed arrows over the conductor symbol. Radiation is nonlinear;
it is proportional to the difference of the absolute temperatures
raised to the fourth power. Utilization of the Farenheit system
allows easy automation of this nonlinear transfer function by the
program and reduces the input radiation conductor value to the
product of the Stefan-Boltzmann constant times the surface area
times the net radiant interchange factor (script F).4, 5

3-1
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Perhaps the most critical aspect of the lumped parameter approach
is determining the lump size. There are methods for optimizing
the lump size but they usually involve more analytical effort and
computer time than the original analysis. One must also keep in
mind that for a transient problem, time is being lumped as well as
space. Of prime importance is what information is being sought from
the analysis. If spot temperatures are being sought, nodes must at
least fall on the spots and not include much more physically than
would be expected to exist at a relatively similar temperature.
Nodes must fall at end points when a temperature gradient is sought.
Of necessity, lumping must be fairly fine where isotherms are
sought. Lumping should be coarse in areas of high thermal conduc-
tivity. When nonlinear properties are being evaluated the lumping
should be fine enough so that extreme gradients are not encountered.
The lumping is also dependent on the severity of the nonlinearity.

In order to reduce round-off error the explicit stability criteria
of the lump (the capacitance value divided by the summation of con-
ductor values into the node) should be held fairly constant. This
value (C/EC) is directly proportional to the square of the distance
between nodes. Although refining the lumped parameter representation
will yield more accurate answers, halving the distance between nodes
decreases the stability criteria by a factor of four and increases
the number of nodes by a factor of two, four or eight depending
upon whether the problem is one, two or three dimensional. For
the explicit case, halving the distance between nodes increases
the machine time for transient analysis by a factor of eight, six-
teen or thirty-two respectively. The increase in solution time for
the implicit methods is somewhat less but proportional.

When lumping the time space, consideration must be given to the
frequency of the boundary conditions. A time step must not step
over boundary excitation points or they will be missed. Do not
step over pulses, rather, rise and fall with them. Generally the
computation interval for the explicit methods is sufficiently
small so that frequency effects can be ignored. However, care must
be exercised when specifying the time step for implicit methods.
If only a small portion of a transient analysis involves frequency
considerations the time step used may be selectively restricted
for that interval. By setting the maximum time step allowed as a
function of time, an interpolation call may be utilized to vary
it accordingly.

One must also realize that the problem being solved is linearized
over the time step. Heating rate calculations are usually computed
for a time point and then applied to a time space. If the rates
are nonlinear a certain amount of error is introduced, particularly
so with radiation. These nonlinear effects may cause almost any
method of solution to diverge. A brute force method for forcing
convergence is to limit the temperature change allowed over the
time space. Consideration of the factors mentioned above, coupled

3-2 6<
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with some experience in using the program, will aid the observant

analyst in choosing lump sizes that will yield answers of sufficient

engineering accuracy with a reasonable amount of computer time.

3.1.2 Basics of Finite Differencing

The concept of network superposition on the lumped parameter

representation of a physical system is easy to grasp. Describing

the network to the program is also quite straightforward. Having

described a network to the program, what information have we really

supplied and what does the program do with it? Basically, we

desire the solution to a simultaneous set of partial differential

equations of the diffusion type; i.e.,

t ax2  ay2  a 2

That the diffusivity (a = k/pCp) may be temperature varying or

nonlinear radiation transfer occurring is immaterial at this

point. Of importance is how equation (3-1) is finite differenced
and its relationship to the network and energy flow equations more

commonly utilized by the engineer. The partial of the T state

variable with respect to time is finite differenced across the

time space as follows:

aT = T'- T (3-2)

at At

where the prime indicates the new T value after passage of the

At time step.

The right side of equation (3-1) could be written with T primed
to indicate implicit "backward" differencing or unprimed to

indicate explicit "forward' differencing. The following equation

is illustrative of how "backward" and "forward" combinations may

be obtained.6

T = 8(aV2 T + S) + (1 -8) (a'V2T" + S') (3-3)
at

Any value of 8 less than one yields an implicit set of equations
which must be solved in a simultaneous manner (more than one
unknown exists in each equation). Any value of 8 equal to or

less than one half yields an unconditionally stable set of equations,
or in other words, any time step desired may be used. Values

of 8 greater than one half invoke stability criteria or
limitations on the magnitude of the time step. A value of 6 equal
to one half yields an unconditionally stable implicit set of equa-

tions commonly known as "forward-backward" differencing or the

Crank-Nicholson method.7 Various transformations or first order

3-3 7<



RIF.DONDO BEACH. CALIFORNMA

integration applied to equation (3-1) generally yield an implicit
set of equations similar to equation (3-3) with 8 equal to
one half. The following finite difference approach generally
applies to transformed equations.

Let's consider the right side of equation (3-3) with B equal to
one and rewrite it as follows:

Ax ax- ax+ ay ay- y+/ Az 5z- az+

The minus or plus signs on the first partial denominator terms
indicate that they are taken on the negative or positive side
respectively of the point under consideration and always in the
same direction. .If we consider three consecutive points (1, 2 and 3)
ascending in the x direction we can complete the finite difference
of the x portion of equation (3-4) as follows:

a (aT2  aT2 \ ( T1 - T
2  T3 - T2

Ax x- ax+ A- + A(3-5)ax x- x+ ~ ax A- + +
Applying the above step to the y and z portions of the equation
(3-4)yields the common denominator of volume (V =Ax*Ay*Az). Using
equation (3-3) with 8 equal to one, finite differencing with the
steps used for equations (3-3), (3-4), and (3-5), substituting
a = k/pCp and multiplying both sides by pVCp yields:

PVC (T - T) kAx kAx
At Ax- (1 T (T 2 - To)

+ ka (T3 -To) + kAy (T4 - To )
Ay- Ay+

+ A- (T 5 - To) + Az (T6 - TO) + Q  (3-6)

where,

Ax = Ay*Az

Ay = Ax*Az

.Az = Ax*Ay and

Q = pVC S

8<
3-4
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The numbering system corresponds to the following portion of a

three dimensional network (Figure 3-2).

T4 +y

C.

SGAx

Ax- Ax+

Figure (3-2)

It should be obvious that the network capacitance value is pVCp,

that the G1 value is kAx/Ax-, etc. Equation (3-6) may be written

as

Co(To-To)/At = G1 (T1 -To) + G2 (T2-To) = G3 (T3-To ) + Gq(T4-To)

+ G5 (T5-To) + G6 (T6-To) + Qo (3-7)

or in engineering terminology the rate of change of temperature with

respect to time is proportional to the summation of heat flows into

the node.

It should be noted that Figure (3-2) is essentially superpositioned

on a lumped parameter cube of a physical system and is the network

representation of equation 3-l). Since equation (3-7) is written in

explicit form, only one unknown (To) exists and all of the informa-

tion necessary for its solution is contained in the network descrip-

tion. If it had been formulated implicitly it would have to be

solved in a simultaneous manner. No matter what method of solution

is requested of the program, the information necessary has been

conveyed by the network description. When an implicit set is used

with 8 greater than zero, the energy flows based on old temperatures
are added to the Q term and the equations are then treated in the

same manner as for 8 equal to zero.

aV2T + S = 0 (3-8)

The solution of Poisson's equation (3-8) is the solution utilized

for steady state analysis. It is extremely important because all of

the unconditionally stable implicit methods reduce to it. If

equation (3-7) had all the right side values primed and the left side

was subtracted from both sides, we could think of Co/At as a Go term

and To (old) would then become a boundary node. In a manner of

speaking, the capacitor we look at in 3-D becomes a conductor in 4-D.

3-5 9<
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We could draw a four dimensional network but since there is no
feedback in time it is senseless to take more than one time step
at a time. However, various time-space transformations can be
utilized such that a one-dimensional "transient" analysis yields

the solution to a two dimensional steady state problem, etc. This
is analogous to the "Particle in Cell" method developed in the

nuclear field for following shock wave propagation.

3.1.3 Iterative Techniques

Now that we have discussed the correlation between the physical
model, network model and mathematical model, let's investigate

the commonality of the various methods of solution. By describing
the network of Figure (3-1) to the program we have supplied it with
five temperatures, five capacitors, five sources (four not specified

and therefore zero), four conductors and the adjoining node numbers
of the conductors. An explicit formulation such as equation (3-6) has
only one unknown. Its solution is easily obtainable as long as any

associated stability criteria are continuously satisfied. A more
interesting formulation would be a set of implicit equations as
follows:

(TI - TI)Cl/At = Q1 + G (T T

(T' - T2)C2/At = Q' + G (T' - T;) + G2 (T' - T;)

(T; - T3)C3/At = + G2 (T - ) + G3(T - T) (3-9)

(T4 - T4 )C /At = Q' + G3 (T' - T') + G4 ( T ' -T)

(T' - T 5)Cs/At = Q' + G (T - T1)

If the above had been formulated as a combination of explicit and

implicit, the knovi explicit portion would have been calculated and
added to the Q terms, then the 8 factor divided into the Q terms
and multiplied times the At term.

If we divide the At term into the C terms and indicate this by
priming C we can reformulate (3-9) as follows:

(C' + G1) T' = Q + C'T1 + G1T 2

(C' + G1 +G )T' = Q' + CT2 + GT1 + GT'

(C' + G2 +G 3)T = Q + CT 3 + G2T' + G 3T' (3-10)

(C1 + G3 + G 4 )Tq = Q + C4T4 + G3T + G4T;

(C' + G4 ) = Q' + C'T 5 + G4 T

This equation can be generalized as:

C'T i + EG T' + Q'
T' = aa (3-11)

C' + EG
1 a

3-6 <
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where the sub a indicates connection to adjoining nodes. A C'
value of zero yields the standard steady state equation, the
conductor weighted mean of all the surrounding nodes. We see here
that the C' can be thought of as a conductor to the old temperature
value and therefore equation (3-11), although utilized to obtain
transient solutions, can be considered as a steady state equation
in 4-D. By rewriting equations (3-10) in the form of equation (3-11)
we are in a position to discuss iterative techniques. By assuming
all old values on the right hand side of (3-10) we could calculate
a new set of temperatures on the left which, although wrong, are
closer to the correct answer. This single set of calculations is
termed an iteration. By replacing all of the old temperatures with
those just calculated we can perform another iteration. This
process is called "block" iteration. A faster method is to utilize
only one location for each temperature. This way, the newest
temperature available is always utilized, otherwise old. This
method is termed "successive point" iteration and is generally 25%
faster than "block" iteration. The iterative process is continued
a fixed (set by user) number of times or until the maximum absolute
difference between the new and old temperature values is less than
some prespecified value (set by user).

Although the above operations are similar to a relaxation procedure
there is a slight difference. We are performing a set of calcula-
tions in a fixed sequence. A relaxation procedure would continuously
seek the node with the maximum temperature difference between old and
new and calculate it. Programming wise, as much work is required in
the seeking operation which must be consecutive as in the calculation.
For this reason it would be wasteful to code a true relaxation
method.

In addition to the iterative approach, several solution subroutines
utilize an acceleration feature and/or a different convergence
criteria. Once it can be determined that the temperatures are
approaching the steady state value, an extrapolation is applied
in an attempt to accelerate convergence. This convergence criteria
is the maximum absolute temperature change allowed between iterations.
This criteria however is generally one sided and any associated
errors are accumulative. In order to obtain greater accuracy, some
subroutines are coded to perform an energy balance on the entire
system (a type of Green's function) and apply successively more
severe convergence criteria until the system energy balance (energy
in minus energy out) is within some prespecified tolerance.

3-7
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3.2 SINDA Program Considerations

3.2.1 Systems Programming

SINDA is more an operating system rather than an applications
program. The more one studies and uses the program the more
apparent this becomes. In order for the program to accomplish
the desired operations with regard to overlay features, data
packing, dynamic storage allocation, subroutine library file and
yet be written in Fortran, it was necessary to program SINDA
as a preprocessor. This preprocessor operates in an integral
fashion with a large library of assorted subroutines which
can be called in any sequence desired yet operate in an
integrated manner. It reads all of the input data, assigns
relative numbers, packs them, forms the pseudo-compute sequences
and writes the operations blocks on a peripheral unit as
Fortran source language with all of the data values dimensioned
exactly in name conmon. It then turns control over to the
system Fortran compiler which compiles the constructed sub-
routines and enters execution. The Fortran allocator has
access to the SINDA subroutine library and loads only those
subroutines referred to by the problem being processed.

Due to this type of operation, SINDA is extremely dependent on
the systems software supplied. However, once the program has
been made operational on a particular machine, the problem data
deck prepared by the user can be considered as machine indepen-
dent. The user need only be aware of the control cards and
deck setup requirements at his particular installation.

3.2.2 Pseudo-Compute Sequence

When working with a simultaneous set of equations such as
equation (3-10), they are quite often treated by matrix methods
and formulated as follows:

A T = B (3-12)

where
(C'+G 1) -G1  0 0 0

-G1 (C;+Gl+G 2) -G2  0 0

A = 0 -G2  (C'+G2+G 3)  -G3  0 (3-13)

0 0 -G3  (C'+G3+G4) --G

0 0 0 -G (C'+G,,)
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and
T' QI+CTI

T' Q+C2T

T = T B+c T5
T1 Q'+C'T

5 Q+CT 5

The inverse of [A] is then calculated and the solution obtained
by matrix multiplication.

-1

T = [A] B (3-14)

It should be noted that the one dimensional problem has no more
than three finite values in any row or column of the coefficient
matrix [A]. A three dimensional problem would generally have no
more than seven finite values in any row or column. It is easy
to see that a one thousand node three dimensional problem would
require one million data locations of which approximately 993,000
would contain zero. The inverse might require an additional one
million data locations. Aside from exceeding computer core area,
the computer time required to calculate the inverse is proportional
to the cube of the problem size and large problems soon become
uneconomical to solve.

The explicit and iterative implicit methods previously discussed
are well suited for optimizing the data storage area required and
reducing the solution time. Note the adjoining node numbers
associated with the conductors of Figure (3-1) as shown in Table (3-1).

Table (3-1)

G# N# N#
1,1,2 -+ G1 between nodes 1 and 2
2,2,3 + G2 between nodes 2 and 3
3,3,4 - G3 between nodes 3 and 4
4,4,5 + G4 between nodes 4 and 5

Note also the row and column position of conductor values off the
main diagonal in the [A] coefficient matrix, equation (3-13). By
retaining the adjoining node numbers for each conductor we are
able to identify their element position in the coefficient matrix.
As a consequence, we need store only the finite values. The main
diagcnal term is a composite of the node capacitance and conductor
values off of the main diagonal.

The SINDA preprocessor operates on the adjoining node numbers to
form what is termed a pseudo-compute sequence (PCS). The nodes
are to be calculated sequentially in ascending relative order so the
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conductor adjoining node numbers are searched until number one is
found. When this occurs the conductor number and other adjoining
node number are stored in a single core location. Several indica-

tors are also stored in this single core location. They reveal if

the capacitor of the node under consideration is non-linear, of a
source from the source data block is present (required for thermal
network correction) and whether the conductor value is nonlinear,
radiation, one way or the last one to the node under consideration.
The search is continued until all ones are located. The process is
then continued for node two, etc. until all the node numbers have
been processed. The pseudo-compute sequence formed is shown in
Table (3-2). A slight variation to this operation is to place a
minus sign on the original other adjoining node number so that it
is not recognized when it is searched for. The resulting pseudo-
compute sequence thus formed is shown in Table (3-3).

Table (3-2) Long Pseudo-Compute Sequence (LPCS)

last G var C var G rad Q G# one way N# var Q

1 1 2
1 1

1 2 3
2 2

1 3 4
3 3

1 4 5
1 4 4

Table (3-3) Short Pseudo-Compute Sequence (SPCS)

last G var C var G rad Q G# one way N# var Q

1 1 2
1 2 3
1 3 4
1 4 5
1 , 0

The above pseudo-compute sequences are termed long (LCPS) and
short (SPCS) respectively. By starting at the top of the pseudo-
compute sequence we are operating on node one. The G# and N#
values identify the conductor into the node (the position of
the conductor value in an array of conductor values) and the
adjoining node (the position of the temperature, capacitor and
source values in arrays of temperature, capacitor and source
values respectively). The node being operated on starts as one
and is advanced by one each time a last conductor indicator is
passed.

It is easy to see that the long pseudo-compute sequence identifies
the element position and value locations of all the off diagonal

3-10 '



REDONDO BEACH. CAtUFORNIA

elements of the row being operated on. It takes complete advantage
of the sparsity of the coefficient matrix. It is well suited for
"successive point" iteration of the implicit equations because all

elements in a row are identified. When a row is processed and the
new T value obtained, the new T can then be used in the calculation

procedure of succeeding rows.

The short pseudo-compute sequence identifies each conductor only
once and in this manner takes advantage of the symmetry of the
coefficient matrix as well as the sparsity. It is well suited for
explicit methods of solution. The node being operated on and the
adjoining node number reveal their temperature value locations and
their source value locations. The explicit solution subroutines
calculate the energy flow through the conductor, add it to the
source location of the node being worked on and subtract it from
the source location for the adjoining node. However, if the short
pseudo-compute sequence were utilized for implicit methods of
solution they would require the use of slower "block" iterative
procedures. The succeeding rows do not have all of the elements
defined and the energy rates passed ahead were based on old tempera-
ture values.

The variable capacitor, conductor and source indicators in the
above pseudo-compute sequences are no more than yes or no switches,
each occupying one bit of the core location. Each time a variable
switch is found yes a location counter is increased by one and used
as a pointer to an entry point in a second pseudo-compute sequence.
The location indicated contains three values in the core location;
the type of variable or nonlinearity and the array and constant
locations of required data for evaluating the function. This
method of storing information on nonlinear network elements is
extremely conservative of core space and also quite efficient.

3.2.3 Data Logistics

The long and short pseudo-compute sequences formulated as shown
previously allow the program to store only the finite values
in the coefficient matrix thereby taking advantage of its sparsity.
In addition, the short pseudo-compute sequence takes advantage of
any symmetry which may exist. Multiple connected conductors which
will be covered in the next section also allow the user to take
advantage of similarity as well. The foregoing is fairly easy to
follow, especially if the nodes and conductors start with the
number one and continue sequentially with no missing numbers. This
restriction is too limiting for general use on large network models.
To overcome this restriction the program assigns relative numbers
(sequential and ascending) to the incoming node data, conductor data,
constants data and array data in the order received. Any numbers
missing in the actual numbering system set up by the user are packed
out thereby requiring only as much core space as is actually necessary.
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All network solution subroutines require three locations for
diffusion node data (temperature, capacitance and source) and
one location for each conductor value. They also may require
from zero to three extra locations per node for intermediate
data storage. Each node in a three dimensional network has
essentially six conductors connected to it but only three are
unique; i.e., each additional node requires only three more
conductors. Hence, each node in a three dimensional system
requires from six to nine storage locations for data values
(temperature, capacitance, source, three conductors and up to
three intermediate locations). The two integer values and six
indicators that make up the first pseudo-compute sequence are
packed into a single core location. Hence, for a three
dimensional network, each node requires approximately three
locations for data addressing for the short and six locations
for the long pseudo-compute sequence. The number of core
locations required per node can vary from nine to fifteen exclu-
sive of the second pseudo-compute sequence for nonlinear elements.

The program requires the user to allocate an array of data
locations to be used for intermediate data storage and initialize
array start and length indicators. Each subroutine that requires
intermediate storage area has access to this array and the start
and length indicators. They check to see that there is sufficient
space, update the start and length indicators and continue with
their operations. If they call upon another subroutine requiring
intermediate storage, the secondary subroutine repeats the check
and update process. Whenever any subroutine terminates its
operations it returns the start and length indicators to their
entry values. This process is termed "Dynamic Storage Allocation"
and allows subroutines to share a common working area.

3.2.4 Order of Computation

A problem data deck consists of four data and four operations
"blocks" which are preprocessed by SINDA and passed on to the
system FORTRAN compiler. The operations blocks are named EXECUTION,
VARIABLES 1, VARIABLES 2 and OUTPUT CALLS. The SINDA preprocessor
constructs these blocks into individual subroutines with the entry
names EXECTN, VARBL1, VARBL2 and OUTCAL respectively. After a
successful FORTRAN compilation, control is passed to the EXECTN
subroutine. Therefore, the order of computation depends on the
sequence of subroutine calls placed in the EXECUTION block by the
program user. No other operations blocks are performed unless
called upon by the user either directly by name or indirectly from
some subroutine which internally calls upon them. The network
solution subroutines listed in Section A.2 internally call upon
VARBL1, VARBL2 and OUTCAL. Their internal order of computation is
quite similar, the primary difference being the analytical method by
which they solve the network. Figure (3-3) represents a flow diagram
of all the network solution subroutines; the subroutine writeups contain
the comparisons made at the various check points and routings taken.
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4. DATA INPUT REQUIREMENTS

4.1 General

A SINDA problem data deck consists of both data and instruction cards.
The card reading subroutines for SINDA do not utilize a fixed format
type of input; they use a free form format quite similar to the old
SHARE decimal data read routine. The type of data is designated by a
mnemonic code in columns eight, nine and ten. This is followed by the
data field which consists of columns twelve through eighty or the
instruction field which consists of columns twelve through seventy-two.
Although blanks are allowed before or after numerical data, they may
not be contained within; that is, the number 1.234 is fine, but
1. 234 will cause the program to abort. The program processes and
stores the problem.data as FORTRAN name common data and reforms
instructions into FORTRAN source language which are then passed on to
the system FORTRAN compiler. Instruction cards which contain an F in
column one are passed on exactly as received, except that the F is
repositioned to column 80. Cards containing a C in column one are
passed on as received to become FORTRAN comment cards. Any instruction
card with or without an F in column one may contain a statement or
sequence number in columns two through five which is passed on to and
used by the FORTRAN compiler.

4.1.1 Mnemonic Codes

4.1.1.1 Old DEC Code (replaced by three blanks) and Dollar Sign ($)

The most frequently used mnemonic code was the old DEC designation
which has been replaced by three blanks. The data following this
blank mnemonic code may be one or more integers, floating point
numbers (with or without the E exponent designation) or alpha-
numeric words of up to six characters each. The reading of a word
or number continues until a comma is encountered and then the
next word or number is read. As many numbers or words as desired
may be placed on a card but they may not be broken between cards.
A new card is equivalent to starting with a comma and therefore no
continuation designation is required or allowed. All blanks are
ignored and reading continues until the terminal column is reached
or a dollar sign encountered. Comments pertinent to a data card
may be placed after a dollar sign and are not processed by the
program. If sequential commas are encountered, floating point
zero values are placed between them.

4.1.1.2 BCD Code

The next most frequently used code is BCD (for binary coded decimal)
which must be followed by an integer one through nine in column
twelve. The integer designates the number of six character words
immediately following it. Blanks are retained and only the
designated number of six character words are read from the card.
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4.1.1.3 END

Mnemonic code END is utilized to designate the end of a block of
input to the program.

4.1.1.4 REM

Code REM serves the same function as a FORTRAN comment card; it
is not processed by the program but allows the user to insert
non-data for clarification purposes.

4.1.1.5 Codes for Nonlinear Elements

Special codes for generation and/or evaluation of nonlinear
elements are discussed in a later paragraph.

4.2 Input Blocks

The data deck prepared by a program user consists of various input
"blocks" containing either data or instructions. There are either two or
four data blocks (an additional one is optional) and four operations blocks
in addition to the title block. A fixed sequence of block input as indi-
cated below is required and each block must start with a BCD 3 header card
and terminate with an END (mnemonic codes). At the end of the deck that
contains the data and operations blocks, a termination card (BCD 3END OF
DATA) must be used. Note that even though an input block is not required
for a given problem, all input blocks must be input, source excepted.

Before presenting details about the various data and operations blocks,
it may be helpful if a list of required input blocks with a brief
description of each were presented at this time.

(1) Title Block (Refer to Section 4.2.1)

(Col) 8 12

BCD 3GENERAL
or BCD 3THERMAL SPCS
or BCD 3THERMAL LPCS

Comment: The TITLE block normally contains a header generated by
by the user. The GENERAL indicates that the problem is non-network
and thus requires no node or conductor data block. The THERMAL
cards indicate that the problem is represented as a network and
that either a short (SPCS) or long (LPCS) pseudo-compute sequence
is to be constructed (Paragraph 3.2.2). Specification of LPCS or
SPCS is obtained from the execution subroutines (Section A.2).
Note that LPCS subroutines must not be mixed with the SPCS sub-
routines. An END (mnemonic code) is required.

(2) Node Data Block (Refer to Section 4.2.2)

(Col) 8 12

BCD 3NODE DATA
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Comment: The NODE DATA block contains the node number, the type
(diffusion, arithmetic, and boundary), the initial temperature,
and the capacitance if applicable.-

A number of options that are concerned with the sequential
generation of nodes, temperature varying capacitance, etc.
is available for specific requirements.

This data block is not required if the title block is BCD 3GENERAL.

An END (mnemonic code) card is required.

(3) Optional Source Data Block (Refer to Section 4.2.3)

(Col) 8 12

]CD 3SOURCE DATA

Comment: Optional means that if data for the Q block is not an
input, then the block header card and the END (mnemonic code) need
not be included in the data deck.

The SOURCE DATA block contains the node number and the source value.

A number of options that involve temperature varying sources, time
varying sources, sequential generation of sources. etc. is available
for specific requirements.

An END (mnemonic code) card is required

(4) Conductor Data Block (Refer to Section 4.2.4)

(Col) 8 12

BCD 3CONDUCTOR DATA

Comment: The CONDUCTOR DATA block contains the conductor number,
the type (linear or radiation), adjoining node number, and con-
ductor values.

A number of options for specific requirements, such as the
sequential generation of conductors, temperature varying con-
ductors, etc., is available.

This data block is not required if the title block is BCD 3GENERAL.

An END (mnemonic code) card is required.

(5) Constants Data Block (Refer to Section 4.2.5)

(Col) 8 12

BCD 3CONSTANTS DATA

Comment: The CONSTANTS DATA block is always inputted as doublets.
The doublet may be a control constant and value or user constant
and value. User constants are simply data storage locations or
control constants having alphanumeric names and the values are
communicated through programs common to specific subroutines
which require them.
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(6) Array Data Block (Refer to Section 4.2.6)

(Col) 8 12

BCD 3ARRAY DATA (Refer to Section 4.2.6)

Comment: The ARRAY DATA input consists of an array number, a
sequential list of information and termination with an END (data
END, not mnemonic).

An END (mnemonic code) card is required.

(7) Execution Operations Block (Refer to Section 4.2.7 and
Paragraph 4.2.7.2)

(Col) 8 12

BCD 3EXECUTION

Comment: The EXECUTION operations block is the first of four
operations blocks (EXECUTION, VARIABLES 1, VARIABLES 2, and
OUTPUT CALLS). These four operations blocks are preprocessed by
SINDA and passed on to the system FORTRAN compiler as four
separate subroutines, EXECTN, VARBL1, VARBL2, and OUTCAL.

None of the operations specified in VARBL1, VARBL2, or OUTCAL will
be performed unless called either directly by name in the
EXECUTION block or internally by a subroutine.

An END (mnemonic code) card is required.

(8) Variables 1 Operation Block (Refer to Section 4.2.7 and
Paragraph 4.2.7.3)

(Col) 8 12

BCD 3VARIABLES 1

Comment: The VARIABLES 1 operations block allows a user
pre-solution operations. Thus the user may specify the network
(evaluation of nonlinear network elements, coefficients and
boundary values) prior to entering the network solution phase.

An END (mnemonic code) card is required.

(9) Variables 2 Operations Block (Refer to Section 4.2.7 and
Paragraph 4.2.7.4)

(Col) 8 12

BCD 3VARIABLES 2

Comment: The VARIABLES 2 operations block allows the user to
perform post-solution operations. That is the solved network may
be examined for quantities such as nodal heat flow, compare
calculated values with test data, etc.

An END (mnemonic code) card is required.
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(10) Output Calls Operations Block (Refer to Section 4.2.7 and

Paragraph 4.2.7.5)

(Col) 8 12

BCD 30UTPUT CALLS

Comment: The OUTPUT CALLS operations block allows a user to call
upon any desired subroutine with its contents printed in the
output interval. Several subroutines for printing output and
plotting are available.

An END (mnemonic code) card is required.

(11) End of Data (Refer to Paragraph 4.2.7)

(Col) 8 12

BCD 3END OF DATA

Comment: Input blocks (1) -(10) above must be terminated by the
END OF DATA card.

(12) Parameter Runs (Refer to Paragraph 4.2.8)

(Col) 8 12

BCD 3INITIAL PARAMETERS
or BCD 3FINAL PARAMETERS

Comment: Parametric analysis which does not involve network or
operation changes may be performed on the same computer run.
Only data values such as output page heading, temperatures,
capacitances, conductances, arrays and constants may be changed.

The parameter run decks are inserted in the problem data deck
immediately preceding the BCD 3END OF DATA card.

(13) Store and Recall Problem Options (Refer to Paragraph 4.2.9)

Comment: The store and recall capacity allows an indefinite
time lapse between parametric analysis; the store subroutine
call may be used as many times as desired. The recall is
activated by a single card that replaces the blank card (refer
to Appendix E) that precedes the problem data deck and must be
followed by initial parameter and block data change cards
exactly as shown for parameter runs, including the first BCD 3
parameter and End Cards and the BCD 3END OF DATA card.

4.2.1 Title Block

The first card of a problem data deck is the title block header card.
It conveys information to the program as to the type of problem,
which data blocks to follow and how they should be processed. The
three options presently available are:

(Col) 8 12

BCD 3GENERAL
or BCD 3THERMAL SPCS
or BCD 3THERMAL LPCS
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The GENERAL indicates that a non-network problem follows and there-
fore no node or conductor data is present. The THERMAL cards
indicate that a conductor-capacitor (CG) network description
follows and that either a short (SPCS) or long (LPCS) pseudo-
compute sequence should be constructed. The title block header
card may be followed by as many BCD cards as desired. However,
the first twenty words (six characters each) are retained by the
program and used as a page heading by the user designated output
routines. The block must be terminated by an END card and is then
followed by node data for a CG network problem or constants data
for a non-network problem.

4.2.2 Node Data Block

4.2.2.1 Definition and Designation

There are three types of nodes, diffusion, arithmetic and boundary.
All nodes are renumbered sequentially (from one on) in the group
order received. The user input number is termed the actual number,
while the program assigned number is termed the relative node number.
This relative numbering system allows sequential packing of the
data and does not require a sequential numbering system on the part
of the program user. It is worth noting that the pseudo compute
sequence is based on the relative numbering system; this means
that the computational sequence of nodes is identical with their
group input sequence. If a user desires to reorder the computa-
tions in order to aid boundary propagation, it is necessary to
reorder only the nodal input data.

The user may intermix the three types of nodes; the SINDA pre-
processor sorts the nodes into the three basic groups in order to
conserve core space.

Diffusion Nodes

Diffusion nodes.are those nodes with a positive capacitance
and thus store energy. In these nodes, temperatures are calculated
by using a finite difference representation of the parabolic
differential equation. A diffusion node causes three core loca-
tions to be reserved, one each for temperature, capacitance, and a
source.

Arithmetic Nodes

Arithmetic nodes have no capacitance and are designated by a
negative capacitance value. Temperatures of these nodes are
calculated by a finite difference representation of Poisson's
partial differential equation. This is a steady state calculation
that always utilizes the latest diffusion node values available.
Arithemtic nodes reserve only temperature and source locations.

Boundary Nodes

Boundary nodes are designated by a minus sign on the node
number; these nodes reflect mathematical boundaries not necessarily
the physical boundary. Boundary temperatures are not changed by
the network solution subroutines, but may be modified as desired by
the user. A boundary node receives only a temperature location.

4-6
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4.2.2.2 Mnemonic Codes for Node Data

Several mnemonic codes are available including the generation and/or
evaluation of nonlinear network elements; under node data,
capacitance is the network element.

Standard Input for a Node (Three Blank Mnemonic Code)

Node data input with the three blank mnemonic code always
consists of three values; the integer node number followed by

the floating point initial temperature and capacitance values. A
negative capacitance value is used to designate an arithmetic node,
while a negative node number designates a boundary node. Although
the capacitance value of a boundary node is meaningless, it must
be included in order to maintain the triplet formed.

(Col) 8 12

N#, TI,C
4 ,70.,1.3 (example 1)
5 ,70.,-1.0 (example 2)
-6,70.,1.0 (example 3)

where, N# represents the node number (always an integer)
Ti represents the initial temperature
C represents the nodal capacitance

The example 1 indicates a diffusion node number 4 with a tempera-
ture of 70. degrees and capacitance of 1.3; example 2 indicates
an arithmetic node 5 with a temperature of 70. degrees and a
capacitance of -l.(any negative number could have been used);
example 3 represents a boundary node 6 with an arbitrary
capacitance of 1.0.

CAL Option

This option allows the SINDA user to input the nodal
capacitance as a composite; the capacitance C is calculated as
X times Y times Z times W.

(Col) 8 12

CAL N#, Ti, X, Y, Z,W
CAL 10,80.,1.,2.,3.,4. (example)

where, N# is the node number
Ti is the initial temperature
X,Y,Z, & W are factors

The example shows node 10 with a temperature of 80. degrees and a
capacitance of 24.(l. x 2. x 3. x 4.).

4-7



SVSTEA1S
REDONDO BEACh. CALIFORN.A

GEN Option

The GEN option allows the user to generate a sequence
of nodes.

(Col) 8 12

GEN N#, #N, IN, Ti ,C
GEN 6 , 3 , 2 , 75.,10.

where, N# is the starting node number (integer)
#N is the number of nodes to be generated (integer)
IN is the node generation increment (integer)

The example given generates a sequence of 3 nodes 6, 8, and 10 all
at 75. degrees and a capacitance of 10. As a note of interest,
the user may input the capacitance value as the X,Y,Z and W
composite shown for the CAL Option.

SIV Option (Identical to the CINDA-3G CGS which is SINDA acceptable)

The SIV option allows the user to specify a temperature
varying capacitance.

(Col) 8 12

SIV N#, Ti, A, F
SIV 5 ,80.,Al,2.4 (example 1)
SIV 5 ,80.,Al,K7 (example 2)

where, A represents the array address of a doublet array
to be linearly interpolated with the node
temperature as the independent variable.

F represents a multiplying factor for the capacitance;
it may be a literal (actual value as shown in
example 1) or the address of a constant's location
containing the actual value (example 2).

SIM Option

This is a combination of the GEN and SIV options; notation
and description follows directly from the previous presentation.

(Col) 8 12

SIM N#,N#,IN, Ti, A,F
SIM 3 , 2, 5,80.,Al,4.2 (example)

The example given will generate nodes 3 and 8 (both at 80. degrees)
and with a linearly interpolated temperature varying capacitance
which is multiplied by 4.2 . Capacitance value is calculated as
density, p, times specific heat, Cp, times volume, V, C = pVCp.
If both p and Cp are temperature varying, the user must reference
an array of p*C versus T with the multiplication factor being V.

4-8



REDONDO EAC.. CAUFORNIA

DIV Option (Identical to the CINDA-3G CGD which is SINDA acceptable)

The DIV option allows the user to calculate the temperature
varying capacitance of a node consisting of two dissimilar
materials. It can be thought of as two SIV calls with the result
added to the nodal capacitance.

(Col) 8 12

DIV N#, Ti, Al, Fl, A2, F2
DIV 5 ,80.,A14,2.4,Al5,5.3 (example 1)
DIV 5 ,80.,A14,2.4,l.0,5.3 (example 2)
DIV 5 ,80.,1.0, K3,A15, K4 (example 3)

Example 1 shows both capacitances as temperature varying; examples 2
and 3 show several ways of inputting when only one of the
capacitances is time varying. Note that the constant capacitance
is calculated in example 2 as 1.0 x 5.3 and in example 3 as
1.0 x value in K3.

DIM Option

The DIM option is a combination of the GEN and DIV options and
its operation follows the description of the GEN and DIV options.

(Col) 8 12

DIM N#,#N,IN, Ti, Al, Fl, A2, F2
DIM 4 ,3 ,2 ,80.,A14,4.2,A17,K36 (example)

The example generates nodes 4, 6 and 8, all at 80. degrees and with
a composite capacitance of 4.2 times the value interpolated from
A14 added to the product of K36 times the value interpolated from
A17.

SPV, SPM, DPV and DPM Options

These options are identical to the options, SIV ,SIM , DIV , and
DIM respectively, with the exception that the arrays referenced con--
tain polynomial coefficients for evaluation of the temperature
varying capacitance.

(Col) 8 12

SPV N#, Ti, A, F
SPM N#, #N,IN, A, F
DPV N#, Ti,A1,Fl,A2,F2
DPM N#, #N,IN,A1,Fl,A2,F2
SPV 5 ,80.,A4,7.6 (example)

The example is for the SPV option; node 5 is at 80. degrees and the
capacitance is evaluated from the polynomial coefficients in array 4,the temperature of node 5 and multiplied by 7.6. If array 4 had the
following input,
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4,2.3,0.8,.006 ,.2E-5,END

capacitance C5 would be calculated as:

C5 = 7.6*(2.3+0.8*T5+0.006*T52+1.2E-5*T5 3)

The largest order of the polynomial that the program can accommodate
is estimated to be eight.

BIV Option

The BIV option allows the user to specify a bivariate
capacitance of a node. The nodal temperature is the X independent
variable and time is the Y independent variable. Time as used here
is the mean time for the iteration and is obtained internally with
TIMEM as the control constant which will be discussed in a later
section called Constants Data Block.

(Col) 8 12

BIV N#,Ti,A,F (Refer to page A.4-12 for form of A)

Example of a Node Data Block

A node data block utilizing the preceding mnemonic options is
listed below as an example, which does not correspond to a particular
problem, but merely illustrates the data input format. It should be
noted that the types of nodes may be intermixed (diffusion, arithmetic
and boundary) and that two sets of mnemonic cards may be on the same
card. Caution: the data for a node must be on a single input card.

(Col) 8 12

BCD 3NDE DATA
1,80.,1.2,2,80.,1.3 $ two diffusion nodes (old DEC)

CAL 3,80.,l.,2.,3.,4. $ one " node
GEN 4,2,1,80.,2.7 $ two " nodes
GEN 6,2,1,80.,-1.0 $ " arithmetic "
GEN -8,2,1,-460.,1.0 $ " boundary nodes
SIV 10,80.,A1,4.63,11,80.,A1,2.5 $ two single material nodes
SIM 12,2,1,80.,Al,3.25 $ " " " "
DIV 14,80.,Al,2.31,A2,K5 $ one double " node
DIM 15,2,1,80.,A1,K4,A2,2.8 $ two ". " nodes
SPV 17,80.,A3,1.8 $ one single " node
SPM 18,3,1,80.,A3,2.3 $ three " " nodes
DPV 21,80.,A3,1.4,A4,1.8 $ one double " node
DPM 23,2,180.,A3,0.4,A4,2.9 $ two " " nodes
BIV 25,80.,A5,4.76 $ bivariate capacitance
END
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4.2.3 Optional Source Data Block

4.2.3.1 Definition

Optional means that if there are no data for the source data block
then the block header card and the END (mnemonic code) need not be
included in the data deck, As in the node data block, the user
input number is the actual number and the program assigned number
is the relative source number, Within the optional source data
block, the source may be a constant, a function of time, a function
of temperature, or a function of both time and temperature. It
should be noted that a source may not be impressed on a boundary
node.

4.2.3,2 Mnemonic Codes for Source Data

Several mnemonic codes are available including the generation of
time and temperature varying sources.

Standard Input for a Source (Three Blank Mnemonic Code)

Source data input with the three-blank mnemonic code consists
of the node number and a constant value which may be either a user
constant or a literal.

(Col) 8 12

N#, Q
3,2.3 (example 1)
5, K2 (example 2)

where, N# represents the node number (always an integer)
Q represents either a user constant or a literal

(a literal in example 1 and a user constant in
example 2)

GEN Option

The GEN option allows the user to impress the same heat
source on a number of equally incremented nodes.

(Col) 8 12

GEN N#, #N, IN, Q
GEN 7, 3, 2, 4.3 (example 1)
GEN 7, 3, 2, K2 (example 2)

where, N# is the starting node number
#N is the number of nodes
IN is the node generation increment

The examples given will generate a sequence of three nodes, 7, 9,
and 11 all with an impressed source of 4.3 (example 1) or with an
actual value in constants location K2 (example 2).
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SIV Option

The SIV option allows the user to specify a temperature
varying source.

(Col) 8 12

SIV N#, A, F
SIV 9, A2, 5.3 (example 1)
SIV 9, A2, K3 (example 2)

where, A represents the array address of a doublet array
to be linearly interpolated with the node tempera-
ture as the independent variable.

F represents a multiplying factor for the source; F
may be a literal (actual value of 5.3 as shown in
example 1) or the address of a constants location
.K3 containing the actual value (example 2).

SIT Option

The SIT option allows the user to specify a time varying source.

(Col) 8 12

SIT N#, A, F
SIT 9, A2, 5.3 (example 1)
SIT 9, A2, K3 (example 2)

where, A represents the array address of a doublet array
to be linearly interpolated with time as the
independent variable (TIMEM).

F represents a multiplying factor for the source;
it may be a literal (actual value of 5.3 as shown
in example 1) or as the address of a constants
location K3 containing the actual value (example 2).

DIT Option

The DIT options allow the user to specify two time varying
sources that are a function of time. That is the total heat into
node i is represented as,

Qi(t) = klf 1 (t) + k2 f 2 (t)

where, k1 and k2 are constants

fl(t) and f 2 (t) are functions of time (TIMEM).

(Col) 8 12

DIT N#, Al, Kl, A2, K2
DIT 6, A3, K7, A4, K3 (example 1)
DIT 5, 2.4, K6, A3, K7 (example 2)
DIT 5, 2.4, 6.2, A3, K7 (example 3)
DIT 6, 2.4, 6.2, A3, 3.7 (example 4)
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where, Al and A2 are arrays (Al and A2 may be
literals but not simultaneously).

KI and K2 may be user constants or literals.

Example 1 means that the heat into node 6 is the sum of the inter-
polated value of array three times the actual value in constants
address K7 plus the interpolated value of array four times the actual
value in constants location K3. Example 2 shows array Al to be a
literal, 2.4 whereas both Al and KI are literals in example 3. In
example 4, Al, Kl, and K2 are literals.

DTV Option

The DTV option allows a user to specify a heat source that is
both time and temperature dependent. The heat into node i is,

Q2 = k1fl(t) + k2f2(T)

where, k1 and k2 are constants

fl(t) is a function of time (TIMEM).

f2 (T) is a function with temperature as a variable

(Col) 8 12

DTV N#, Al, K1, A2, K2
DTV 7,, A3, K7, A4, K3 (example 1)
DTV 6, 2.4, K6, A3, K7 (example 2)
DTV 6, 2.4, 6.2, A3, K7 (example 3)
DTV 6, 2.4, 6.2, A3, 3.7 (example 4)

where, Al and A2 are arrays (Al and A2 may be
literals but not simultaneously).

Kl and K2 may be user constants or literals.

Example 1 means that the heat into node 7 is the sum of the inter-
polated value of array three times the actual value in constants
address K7 plus the interpolated value of array four times the
actual value in constants location K3. Example 2 shows array Al
to 6 literal with a value of 2.4. Example 3 shows both Al and Kl
to be literals and in example 4, Al, K1, and K3 to be literals.

4.2.4 Conductor Data Block

4.2.4.1 Definition

Two basic types of conductors may be used, regular or radiation;
either may utilize temperature varying properties in calculating the
conductance value. It should be noted that the regular conductor
is associated with the linear temperature difference, Ti - Tj; as
a result the regular conductor input and output has the dimensions
of a conductor. On the other hand, the radiation conductor is
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inputted as abij of the radiation term abij(Ti 4-Tj4)

where, a is the Stefan-Boltzmann constant (.1714 x 10-8 Btu/hr ft 2oR")

bij is a radiation coefficient that includes shape factor and
properties

The radiation conductor printout is ob..

4.2.4.2 Mnemonic Codes

The mnemonic codes discussed under node data are available under

conductor data with slightly revised meanings.

Blank Mnemonic Code (Standard Conductor Input)

When utilizing the blank mnemonic code a regular conductor

consists of the integer conductor number followed by two integer
adjoining node numbers and the floating point conductance value.
If more than one conductor has the same constant value, these

conductors may share the same conductor number and value. This
is accomplished by placing two or more pairs of integer adjoining
node numbers between the conductor number and the value.

(Col) 8 12

G#,NA,NB,G
1 ,1 ,2 ,2.3 (example 1)
2 ,2 ,3 , 3, 4, 4, 5,7.6 (example 2)
-3,4 ,9 ,1.8 E-10 (example 3)
4,-5,6,4.3 (example 4)

where, G# stands for the integer conductor number

NA and NB are adjoining node numbers
G is the conductor value (for linear temperature difference)

and represents the radiation coefficient for fourth
power temperature difference.

Example 1 is a regular conductor number 1, between nodes 1 and 2

with a value of 2.3. Example 2 demonstrates the use of multiple
connections and can be used only for constant conductors; node

number 2 has a value of 7.6 and is used between nodes 2 & 3, 3 & 4,
and 4 & 5. Example 3 shows a radiation coefficient number 3
between nodes 4 & 9 with a value of 1.8E-10. Example 4 illustrates
the use of a one-way conductor (refer to the GEN option below for
details).

CAL Option

The CAL option for the conductor data differs from the node
data in that the conductor value is calculated as X times Y times Z
divided by W. When using the X,Y,Z, & W input under the CAL option
no addresses are allowed; all values must be floating point numbers.
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(Col) 8 12

CAL G#,NA,NB, X, Y, Z,W
CAL 4 , 5, 6,1.,2.,3.,4. (example)

The example conductor 4 between nodes 5 & 6 receives the value of 1.5.

GEN Option

The GEN option allows the user to generate a sequence of conductors
and the increment values may be zero or negative. Inputs X,Y,Z,W under the
CAL option may also be used with the GEN option. An additional feature of
the program is the one way conductor which allows its effect (value) to be
included in the calculation procedure of one adjoining node but not the other.
One way conduction is indicated by placing a minus sign on the node number
that does not include the one way conductor on its calculation. One way
conductors may be used with any of the mnemonic options.

(Col) 8 12

GEN G#,#G,IG,NA,INA,NB,INB,G
GEN 5 , 3, 1, 1, 1,90, -1,4.7 (example 1)

GEN G#,#G,IG,NA,INA,NB,INB, X, Y, Z,W
GEN -8, 3, 0, 1, 1,99, 0,4.0,0.8,1.E-10,1.0 (example 2)
GEN 9 , 3, 0,-32, 1,33, 1,7.8 (example 3)

where, #G stands for the number of conductors to be generated
IG, INA, & INB values are the incremental adjustments

to the conductors, and the adjoining nodes.

Example 1 is for a regular conductor, example 2 for a radiation coefficient
and example 3 is for a one way conductor. These examples are equivalent to
the following:

5,1,90,4.7,6,2,89,4.7,7,3,88,4.7 (for example 1)
-8,1,99,2,99,3,99,3.2E-10 (for example 2)
9,-32,33,-33,34,-34,35,7.8 (for example 3)

SIV Option (Identical to the CINDA-3G CGS hjich is SINDA acceptable)

The SIV option for conductor data allows linear interpolation of a
temperature varying property. the interpolated value is then multiplied
by the factor F to obtain the element value. If only one temperature is
to be used for interpolation, the node (with the temperature to be used)
is listed first and the factor F is set negative.

(Col) 8 12

SIV G# ,NA,NB, A, F
SIV 10 , 8, 9,Al,4.7 (example 1)
SIV -11, 9,10,A?,-3.4E-10 (example 2)

4-15



4ECNOO, BEACI. CALFOIRNIA

In example 1, conductor 10 is evaluated with the arithmetic mean of tempera-

tures 8 & 9 used as the independent variable in array Al and 4.7 as the

factor. Example 2 illustrates the case of a single temperature (number 9)

used in the interpolation of array 2 and for a radiation coefficient.

SIM Option

The SIM mnemonic option is a combination of the GEN and SIV options.

(Col) 8 12

SI G#,#G,IG,NA,INA,NB,INB, A,F

SIN 12, 3, 1, 7, 1,15, 2,A4,4.6 (example)

The above example wrill generate three separate conductors, each of which are

temperature varying and dependent upon the mean of the adjoining temperatures

as follows:

12,7,15,A4,4.6,13,8,17,A4,4.6,14,9,19,A4,4.6

If the factor F (4.6) had been negative, the first nodes (7, 8, & 9) would

have been used for the interpolation.

,DIV Option (Identical to the CINDA-3G CGD which is SINDA acceptable)

The DIV option allows simulation of a conductor consisting of two serial

dissimilar materials, one or both of which may be temperature varying. Two

separate conductance values are computed and then summed as series conductors

(regular conductors) or multiplied for effective conductance (radiation) Th"nat

is, if Gi represents the regular conductance of one material and G2 the other,

then the combined conductance (for series conductors is evaluated as:

G 1
combined 1 1+ -

G1 G2

If Gl represents the emissivity el of one surface and G2 contains the

emissivity E2 of the second surface, the combined radiation coefficient

is evaluated as:

G = Gl*G2 R El * e2 * F (F is a factor between surfaces 1 & 2)
combined

If one of the two materials is not temperature varying, a literal is used in

place of the array address and no interpolation is performed; the conductance

is evaluated as the literal times the F value.

(Col) 8 12

DIV G# ,NA,NB,A1, Fl,A2,F2
DIV 15 ,12,14,Al, 2.3,A2,K7 (example 1)

DIV -16,17,28,A4,2.E-l0,A5,l.0 _ (example 2)
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In example 1 for regular conductor 15, temperature 12 is used with array 1
and the factor 2.3 to obtain the G1 value and temperature 14 is used with
array 2 and the contents of K7 to obtain the GR value. Example 2 is for
the radiation coefficient 16 with two temperature varying emissivities.

DIM Option

The DIM option is a combination of the GEN and DIV options. Either one or
both of the two dissimilar materials may be temperature varying. The
series conductance and product radiation coefficient calculation follow
the method discussed under the DIV option.

(Col) 8 12

DIM G#,#G,IG,NA,INA,NB,INB,A1, Fl, A2,F2
DIM 17, 4, 1, 6, 1,16, 1,A4,16.6,3.4,7.2 (example)

In the example above, for the four regular conductors only one of the
material is temperature varying and the other has a constant value
(G2 = 3.4*7.2).

SPV Option

The SPV option is identical to the SIV option except that a polynomial
solution is performed instead of interpolation. Either the temperature of
the first nodal input or the mean temperature of the adjoining nodes is used
for polynomial evaluation; the former is designated by a negative factor, -F,
and the latter by a positive factor, F.

(Col) 8 12

SPV G#,NA,NB, A,F
SPV 21,32,42,A6,-4.3 (example 1)
SPV 22,33,43,A6,3.8 (example 2)

Example i uses the temperature of node 32 for interpolation, whereas in
example 2 the mean temperature of nodes 33 and 43 is used for interpolation.

SPM Option

The SPM option is a combination of the GEN and SPV options. Directions
for its use follow directly from the individual GEN and SPV descriptions.

(Col) 8 12

SPM G#,#G,IG,NA,INA,NB,INB, A,F
SPM 23, 2, 1,18, 1,99, O,A6,K9 (example)

DPV Option

The DPV option is identical to the DIV option with the exception that
the DPV option uses a polynomial evaluation in lieu of direct interpolation.
One or both materials may have temperature varying properties.
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ol) 8 12

DPV G#,NA,NB,A1, F1,A2,F2

DPV 25,27,28,A6,4.7,A7,2.3 (example)

the example the conductances for the two materials are evaluated

parately and combined as series conductances or multiplied if radiation.

M Option

e DPM option is a simple combination of the GEN and DPV options. It is

entical to the DIM option except that polynomial evaluation is substituted
r linear interpolation.

ol) 8 12

DPM G#,#G,IG,NA,INA,NB,INB,A1,Fl,A2,F2
DPM 26, 3, 1,29, 1,30, 1,A7,K4,A6,14.7 (example)

V Option

e BIV mnemonic option allows simulation of a bivariate property. The array
ferenced by the call must be a bivariate array where the X independent
riable is temperature and the Y independent variable is time. The mean
mperature of the adjoining nodes and the mean time (control constant TIMEM)
rough the program constants are used for interpolation. The result is then
itiplied by the F factor to obtain the conductance value.

variate conductivity is generally encountered in superinsulations which are
bject to pressure changes. This often is due to convection effects when a
cuum is being pulled during test or during launch. Although the second
riable may be altitude or pressure, these variables can generally be
lated to time and thus simulated by use of the BIV option.

ol) 8 12

BIV G#,NA,NB, A,F
BIV 29,17,42,A9,7.8 (example)

ogram Idiosyncrasy and Illustration of Conductor Input Options

A single valued conductor with as many adjoining node pairs as desired

y be used, extending several cards if necessary, however. In addition,
e mnemonic options may have more than one set of data on a card, but a
t of data may not be broken between cards.

35
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Various conductor input options are illustrated below:

(Col) 8 12

BCD 3CONDUCTOR DATA
1,1,2,1.2,2,2,3,1.7 $ two regular conductors

3,3,4,4,5,5,6,1.5 $ triple placed conductor

4,-7,8-8,9,7,6 $ double place one-way conductor

CAL 5,4,5,1.4,3.7,2.6,8.2 $ calculated conductance

GEN 6,3,1,6,1,6,1, 4.8 .$ generate three conductors

SIV 9,10,11,A3,4.6 $ variable conductor, single

SIM 10,2,1,11,1,12,1,A3,2.8 $ two variable conductors

DIV 12,17,24,A3,4.1,A4,7.6 $ variable conductor, double

-16,1,99,1.E-15 $ radiation conductor

SPV 17,4,28,A5,13.7 $ variable conductor, single
SPM -18,3,1,2,1,99,0,A5,1.4E-14 $ variable radiation conductor

DPV 21,19,37,A5,4.3,A7,9.2 $ variable conductor, double

DPM 22,4,1,20,138,1,A5,4.3,A7,10.6 $ four variable conductors

BIV 29,29,43,A8,K4 $ bivariate conductor

END

4.2.5 Constants Data block

Constants data are always input as doublets, the constant name or

number followed by its value. They are divided into two types,

control constants and user constants, and may be intermingled

within the block. :

4.2.5.1 User Constants

User constants, which are identified as numbers, are simply data

storage locations which may contain .integers, floating point numbers

or up to six character alphanumeric words. The user must place

data in user constant locations as needed and supply the location

addresses to subroutines as arguments.

4.2.5.2 Control Constants

Control constants number forty-three and have alphanumeric names.

Control constant values are communicated through program common ,

to specific subroutines which require them. However, any control

constant name desired can be used as a subroutine argument.

Wherever possible, control constant values not specified are set

to some acceptable value. If a required control constant value

is not specified, an appropriate error message is printed and the

program terminated. The user should check the description of sub-

routines being used to determine control constant requirements.

A list of control constant names and brief description of each

follows. Exact usage is found in the subroutine descriptions.

ARLXCA The maximum arithmetic relaxation change allowed.

ARLXCC The maximum arithmetic relaxation change calculated.

ATMPCA The maximum arithmetic temperature change allowed.

ATMPCC The maximum arithmetic temperature change calculated.
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BACKUP If non-zero, the completed time step is erased and repeated.
BALENG User specified system energy balance to be maintained.
CSGFAC Stability criteria multiplication/division factor.
CSGMAX Maximum stability criteria for network. (C/EG) max and min.
CSGMIN Minimum stability criteria for netowrk. (C/G) max and rin.
CSGRAL Stability criteria range followed.
CSGRCL Stability criteria range calculated.
DAMPA Arithmetic node damping factor.
DAMPD Diffusion node damping factor.
DRLXCA The maximum diffusion relaxation change allowed.
DRLXCC The maximum diffusion relaxation change calculated.
DTIMEH Largest time step allowed (maximum).
DTIMEI Input time step for implicit solutions.
DTIMEL Smallest time step allowed (minimum).
DTIMEU Time step used for all transient network problems.
DTMPCA The maximum diffusion temperature change allowed.
DTMPCC The maximum diffusion temperature change calculated.
ENGBAL The calculated energy balance of the system.
LAXFAC Linearization interval for subroutine CINDSM.
LINECT A line counter location for program output.
LOOPCT Program count of iteration loops performed (Integer).
NLOOP User input number of iteration loops desired (Integer).
OPEITR Causes output each interation if set non-zero.
OUTPUT Time interval for activating OUTPUT CALLS.
PAGECT A page counter location for program output.
TIMEM Mean time for the computation interval.
TIMEN New time at the end of the computation interval.
TIMEND Problem stop time for transient analysis.
TIMEO Old time at the start of the computation interval,

also used as problem start time, may be negative.

ITEST,JTEST,KTEST,LTEST,MTEST

Dummy control constants with integer names.

RTEST, STEST,TTEST,UTEST,VTEST

Dummy control constants with non-integer names.

4.2.5,3 Example of Constants Data Block

The following is representative of a constants data block.

(Col) 8

BOD 3CONSTANTS DATA
TIMEND=10.0,0UTPUT=l. 0 $CONTROL CONSTANTS
1=10,2=3,3=7,4=8 $INTEGERS
5=1.,6=1.E3,7=1.E-3 $FLOATING POINT
8=TEMP, 9=ALPIIA $ALPHANUMERIC

END

SINDA will accept commas in place of the equal signs (indicated
above) so as to remain compatible with CINDA-3G.
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4.2.6 Array Data Block

4.2.6.1 Format

Array data input consists of an array number, a sequential list of
information and termination with an END (data END, not mnemonic).
For example,

(Col) 12

1,1.6,2.4,3.8,END

The example indicates array 1 with three data values.

4.2.6.2 Integer Count of Array Values

Numerous subroutines (interpolation, matrix, etc.) require that the
exact number of values in an array be specified as an integer. In
order to reduce the number of subroutine arguments and chance of
error, the SINDA preprocessor counts the number of values in an
array and supplies this integer count as the first value in the
array. Subroutines whose array arguments require the array integer
count will list the array argument as A(IC). Subroutines whose array
arguments require the first data value rather than the integer count
will list the array argument as A(DV).

Referring to the example of 4.2.6.1, by addressing Al as a sub-
routine argument the integer count 3 would be the first value
followed by 1.6, 2.4 and 3.8. If the user wanted the 1.6 data
value to be addressed the argument should be Al+1.

4.2.6.3 Two Types of Alphanumeric Inputs and SPACE Option

One alphanumeric input allows each word to be separated by a comma,
requires each word to start with a letter and does not allow the
use of blanks. The other requires use of the BCD mnemonic code and
the single integer word count (Col 12). It allows use of letters,
numbers or characters anywhere and retains blanks. The SPACE option
is an easy way for the user to specify a large number of locations
which are initialized by the preprocessor as floating point zeros.
The space option requires the word SPACE followed by the number of
locations to be initialized. It may be used anywhere in an array
and as many times as desired as long as total available core space
is not exceeded. An example of these inputs is presented below.

(Col) 8 12

BCD 3ARRAY DATA
1,1.6,2.4,3.8,END $FLOATING POINT NUMBERS
2,TEMP1,TEMP2,END $ALPHANUMERIC
3 $ALPHANUMERIC

BCD 3TEMPERATURE STUDY
END
4,SPACE,100,END $SPACE OPTIONS
5,4.7,2.3,SPACE,14,8.6,SPACE,17 ,END

END4-21
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4.2.7 Program Control

4.2.7.1 General Considerations

Data Check. . .

"The SINDA preprocessor does a significant amount-of data
checking as the data blocks (discussed in the previous paragraphs)
are read. Detected input errors are noted and the card containing
the error is identified. For example, when the adjoining node pairs
under conductor data are read, an immediate check is made for
these nodes as input under node .data. Incorrect constraint names
are also immediately identified.

Pseudo-Compute Sequence '"

After the four (or five) blocks have been read.the preprocessor
then forms.the pseudo-compute .sequences as described:in Section 3.2.2.

11.1 " , ., ,j..,-; : ;'. "'.;.'- -

Operations Blocks ..

'Aside from the title block, there are either two cr five data
blocks depending upon whether the problem is GENERAL or THERMAL
respectively. In either case, there are four operations blocks
entitled EXECUTION,. VARIABLES 1, VARIABLES 2 and OUTPUT CALLS.
The operations or instructions called for in these blocks determine

the program control. They are preprocessed by SINDA and passed on
to the system FORTRAN compiler as four separate subroutines entitled

EXECTN, VARBL1, VARBL2 and OUTCAL respectively. . hen the FORTRAN
compilation is successfully completed, control is passed to the
EXECTN subroutine.which sequentially performs the operations in the

same input order as specified by the user in the EXECUTION block.
None of the operations specified in the other three blocks will
be performed unless called either directly by name in the EXECUTION ~

block' or internally by a subroutine. .

No operations will be performed unless requested by the user
and no-control constants will be utilized unless called upon by a
subroutine. Network solution subroutines internally call upon VARBL1
VARBL2, and OUTCAL (see Figure 3-3,.page 3-13), and use numerous
control constants. Details on these control constant requirements
are presented in Section A.2. Network solution subroutines require
no arguments-but most others do. These arguments may be addresses
which refer to the location of data or they may be literals; i.e,
the actual data value. All of the input data can be addressed by
using alphanumeric arguments of the following form.

TN for the temperature location of node N
CN for the capacitance location of node N
QN for the source location of node N
GN for the conductance location of conductor N
KN for the value location of constant N
AN for the starting location of array N . .
and control constants utilize te r individual names.
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Array Address

When addressing arrays the user must be careful to address

correctily the integer count or the data value in the array (refer

to Section 4.2.6). The user may also uniquely address any item in

an array. For instance, the one hundredth value in array ten could

be uniquely addressed as A10+100. This means of addressing is only

available for arrays. If a user desired to address the twenty BCD

words for the title block which were retained for output page

headings, he could do so by using the argument II, or any word

individually, by Hn, n = 1,20.

Dynamic Storage Allocation

Dynamic Storage Allocation is a unique feature of the 
SINDA

program. Although not carried to the ultimate, all subroutines

which require working space generally obtain it from a common

working array. However, the user must specify information about

this array to the program. To do so the user must place three

FORTRAN cards at the start of the execution block; for example:

(Col) 1 7

F DIMENSION X(100)
F NDIM = 100
F NTH = 0

The names used must be exactly as shown; in the above example

a working array of 100 locations is formed. If a different

number of locations is needed the integer 100 is changed as

desired (both first and second cards). If no working locations are

required the cards may be omitted. The progrm user must check the

writeups of subroutines he is using in order to determine if, when

and how much of a working array is required.

An F in column one indicates to the preprocessor that the card is

FORTRAN and should be passed on as received. This F option allows

the user to program FORTRAN operations directly into the operations

blocks. However, the SINDA arguments listed above are not FORTRAN

compatible with the exception of the control constant 
names. There-

fore, it is recommended that the program user utilize SINDA 
sub-

routine calls wherever possible. This is impossible however when

logical operations are required. In this case it is recommended that

the user place SINDA data values as needed into the available dummy

control constant names allowed for that purpose. Then, FORTRAN

logical operations can be utilized with the dummy control 
constant

names as arguments. FORTRAN statement numbers for routing purposes

may be placed in columns two through five on any operations cards,

either FORTRAN or SINDA.

The data field for node, conductor, constant and array data con-

sists of columns twelve through eighty. However, the data field
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of operations cards ends with column seventy--two. In a manner of
speaking, a SINDA subroutine call is a special array and should
terminate with a data END. In order to simplify input for the
user, the operations read subroutines recognize two special
characters; the left and right parenthesis. The left parenthesis
is accepted as a comma, while the right parenthesis is accepted as
a comma followed by a data END. This allows what would have been:

(Col) 12
ADD, K1,K2,K3,END

to be more esthetically formatted as:

AD (KI ,K2,K3)

which is almost identical to a FORTRAN subroutine call.

4.2.7.2 Execution Operations Block

An execution operation block might be as follows:

(Col) 1 8 12
BCD 3EXECUTION

F DIMENSION X(25)
F NDIM=25
F NTH=O
F 10 TIMEND=TIMEND+1.0

CNFRWD SEXPLICIT FORWARD DIFFERENCING
STFSEP(T20,TTEST) $PLACE T10 INTO DUMMY CC

F IF(TTEST.LE.100.) GO TO 10
END

The above indicates a transient thermal problem in which the user
desires to terminate the analysis when the temperature at node 20
exceeds one hundred degrees. The problem must have been fairly
small because only twenty-five working locations were dimensioned
and CNFRWD requires one per node. It does demonstrate the use
of both SINDA calls and FORTRAN operations, and that control
constants are referred to by name in either. Another example
might be

(Col) 1 8 12

BCD 3EXECUTION
F DIMENSION X(500)
F NDIM=500
F NTH=0

CINDSL $STEADY STATE (USES LPCS)
F TIMEND=10.0

CNFRWD $TRANSIENT ANALYSIS (USES SPCS)
END
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In this case the user desires to have a steady state analysis per--
formed on the network followed by a transient analysis utilizing
the steady state answer as initial conditions. However, the two

network solution subroutines that are cited are incompatible because

CINDSL uses LPCS whereas CNFRWD uses SPCS; as a result the program
would be terminated with an appropriate error message.

There is no end to the variety of examples that could be generated.

In reality, the program user is actually programming although it is

somewhat disguised as data input. However, the program does

simplify the task of data logistics and automates overlay, tape

library, and other systems features thereby greatly lessening the

programming knowledge which might otherwise be required of a user.

A point well worth considering is proper initialization. All

instructions contained in the other three operations blocks are

performed each iteration or on the output interval. If an operation

being performed in Variables 1 is utilizing and producing non

changing constants, it should be placed in the Execution block

(prior to the network solution call) so that it will be performed

only once. Input arrays requiring post-interpolation multiplication

for units conversion only could be prescaled, thereby deleting the

multiplication process. Complex functions of a single independent

variable requiring several interpolation values which are then

combined in a multiplicative fashion can be precalculated versus

the independent variable. Such a precalculated complex function

reduces the amount of work performed during the transient analysis.

A great many operations of this type can be performed in the

Execution block prior to call for a transient analysis. Also, output

operations to be performed once the transient analysis is completed

may be placed directly into the Execution block following the

transient network solution call.

4.2.7.3 Variables 1 Operations Block

The statement that this program solves nonlinear partial

differential equations of the diffusion type is not quite accurate.
In reality the program only solves linear equations. However,
nonlinearities are evaluated at each computation interval and in
this manner generally yield acceptable answers to nonlinear problems.
This method is more properly termed quasilinearization. The

Variables 1 operations block allows a point in the computational
sequence at which the user can specify the evaluation of nonlinear
network elements, coefficients and boundary values. The various

mnemonic codes utilized for node and conductor data cause the

construction of a pseudo-compute sequence which is used to evaluate
nonlinearities. The user must specify any additional functions
or nonlinearities as subroutine calls in Variables 1 in order to
completely define the network prior to entering the network solution
phase.
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Prior to inclusion of the various mnemonic codes, the Variables 1
operations block primarily consisted of linear interpolation
subroutine calls input by the user for the evaluation of temperature
varying properties. While these linear interpolation calls are
automated through use of the mnemonic codes, it is up to the
program user to specify any required trivariate interpolations or
other nonstandard functional evaluations necessary. Just prior
to performing the Variables 1 operations, all network solution
subroutines zero out all source locations. Therefore, the user is
required to specify constant as well as variable or nonlinear
impressed sources in this block if not specified in source data.
block. A Variables 1 operations block could be as follows:

(Col) 1 8 12
BCD 3VAPIABLES 1

STFSEP(10.0,Q17) $CONSTANT IMPRESSED SOURCE
D1DEGl(TIMEM,A8,Q19) STIME VARYING SOURCE
D2Dl1W(T18,TIMEM,Al9,7.63,Gl8) $BIVARIATE FUNCTION

F TTEST=11.6
F IF(TIMEN.GT.10.) TTEST=0.0

STFSEP(TTEST,Q27) $VARIABLE SOURCE
END

The first call above places a constant heating rate of 10.0 into the
source location of node 17. The second call causes a linear inter-
polation to be performed on array 8 using mean time as the indepen-
dent variable to obtain a time varying heating rate for node 19.
The third call uses mean time and the temperature at node 18 as
independent variables to perform a bivariate interpolation. The
interpolated answer is then multiplied by 7.63 and placed as the
conductance value of conductor 18. The next two cards are FORTRAN
and allow a value of 11.6 to be placed into control constant TTEST
until TIMEN exceeds 10.00 after which a value of 0.0 is placed
into TTEST. This amounts to a single step in a "stair-case"
function. The last card places the value from TTEST into the
source location for node 27. Another sample Variables 1 block might
look as follows:

(Col) 1 8 12

BCD 3VARIABLES 1
BLDARY(A12+1,T1,T7,T3,T4) $CONSTRUCT VECTOR
D1DEG1(T7,Al9,A13+2) $INTERPOLATION
IRRADE(A7,Al3,AO1,Al2) $IR RADIOSITY EXPLICIT
BRKARY(Al2+l,Ql,Q7,Q3,Q4) $DISTRIBUTE Q RATES
D1D1WM(TIMEM,A9,0.35,TTEST) $INTERPOLATE
ADD(TTEST,Q1,Q1) $ADD TW0 RATES

END

The first call above causes the construction of an array of four
temperature values necessary as input to an infrared radiosity
subroutine (third card). The second call causes the linear
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interpolation of a temperature varying property from array 19 to be
placed into array 13+2 which is the second array argument for the
-radiosity call. This second argument must be an array of surface
emissivities for the surfaces under consideration; therefore array
19 must be an array of temperature varying emissivity. The BRKARY
call takes data values from array 12 + 1, 2, 3 and 4 and places
them into the source locations for nodes 1, 7, 3 and 4 respectively.
The fifth call performs linear interpolation on array 9 using TIMEM
as the independent variable, multiplies the result by 0.35 and
places it in control constant TTEST. This might be a time varying
solar heating rate where 0.35 is the solar absorptivity. The ADD
call adds this rate to what is already contained in the source
location for node 1. Each node has one and only one source loca-
tion. If a user desires to impress more than one heating rate on a
node, he must sum the rates and supply the value to the single
source location available per node.

The Variables 1 operations block is the logical point in the network
computational sequence for the calculation of impressed sources
whether they are due to internal dissipation of powered components,
radiation depositation, aerodynamic heating or orbital heating. If
a desired subroutine is not available, the user may always add his
own; data communication is obtained through subroutine arguments
as in any other subroutine.

4.2.7.4 Variables 2 Operations Block

In regards to the network solution, the Variables 1 operations may
be thought of as pre-solution operations and Variables 2 operations
as post-solution operations. In Variables 1 the network was com-
pletely defined with respect to nonlinear elements and boundary
conditions. Variables 2 allows the user to look at the just solved
network. He may meter and integrate flow rates, make corrections
in order to account for material phase changes or compare just
calculated answers with test data in order to derive empirical
relationships. A simple Variables 2 operations block might be as
follows:

(Col) 8 12

BCD 3VARIABLES
QMETER(T1,T2,Gl,Kl) $METER HEAT FLOW
QINTEG(K1,DTIMEU,K2) $INTEGRATE HEAT FLOW
RDTNQS(T5,Tl,G8,K3) $METER RADIATION FLOW
QINTEG(K3,DTIMEU,K4) $INTEGRATE RADIANT FLOW
ADD (K2 ,K4,KS5)

END

The first call measures the heat flow from node one to node two
through regular conductor one and stores the result in constant
location one. The second call performs a simple integration with
respect to time and sums the result into constants location two.
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The third call measures heat flow through a radiation conductor which

is then integrated by the fourth call. The sum of the two integra-
tions is obtained by the fifth call. Another Variables 2 operations

block might be as follows:

(Col) 8 121

BCD 3VARIABLES 2
ABLATS(AJ,1.76,K8,A7,T5,C15) $ABLATIVE ON NODE 15

END

Phase change subroutines such as the above are unique in that they

perform automatic corrector operations. Node 15 has been solved by

the network solution subroutine as though no ablative existed. The

ABLATS subroutine then corrects the temperature node 15 to account

for the ablative material. It does this by calculating the average

heating rate to node 15 over the time step just performed and utilizes

it as an inner surface boundary condition for the internally con-

structed 1-D network representation of the ablative material. The

correctness of this analytical approach can be rigorously substan-

tiated for use with explicit network solution subroutines. However,

when used with large time step implicit methods it yields a con-
trolled instability and the results may be questionable. It is up

to the user to determine the solution accuracy by whatever means

available. A more complicated Variables 2 operations block could be

as follows:

(Col) 1 5 8 12

BCD 3VARIABLES 2
DIDEGl(TIMEN,Al0,K8) $GET TEST TEMPERATURE
SUB(T8,K8,TTEST) $0BTAIN TEMP DIFFERENCE

F IF(TTEST.LE.2.0) GO TO 10
MLTPLY(G7,0.99,G7) $REDUCE CONDUCTANCE

5 STFSEP(-1.0,BACKUP) $SET BACKUP NON-ZERO

F GO TO 20
F 10 IF(TTEST.GE.-2.0) GO TO 15

MLTPLY(G7,1.01,G7) $INCREASE 0ONDUCTANCE

F G TO 5
15 QMETER(T8,T15,K9)

QINTEG(K9,DTIMEU,K10)

.F 20 CONTINUE
END

This corresponds to a portion of a network as follows:

" -460

3-D 8
NETWORK

G7 4-215
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Array 10 is a time-temperature test history of node 8 and node 15

is a known boundary reference temperature. The problem is to calculate
the value of conductor seven which will yield a calculated temperature

at node eight that is within +2.0 degrees of the test history. The
above Variables 2 operations will attempt to modify conductor seven

so that it will meet the constraints on temperature eight. It is quite
"brute-force" and unsophisticated. However, the corrector operations

are at the discretion of the user. If the tolerances were too severe
or the correction operations too strong the correction for one tolerance

could lead to dissatisfaction of the other and an impasse result. If

the reference temperature at node 15 were incorrect, possibly no value

of conductor seven would satisfy the constraints. The end result of

such a study would be to produce a plot of conductance seven versus

time which could be used to derive an empirical relationship with
other parameters. Too wide a tolerance would cause the plot to

resemble a stair-case function. Please note that either condition
being unsatisfied causes control constant BACKUP to be set non-zero

and the iteration to be redone with the corrected conductor seven
value. Only when all criteria are met are the metering and integra-
tion operations performed.

4.2.7.5 Output Calls Operations Block

This operations block could have been entitled Variables 3 but

Output Calls seemed more appropriate. In it a user may call upon
any desired subroutine. However, its contents are performed on the
output interval so it is only logical that it would primarily

contain instructions for outputing information. There is a variety
of output subroutines offering the user several format options. A
very simple Output Calls block would be as follows:

(Col) 8 12

BCD 30UTPUT CALLS
PRNThP

END

The above call will output certain time control informtion and the
temperature of every node in the network under consideration. The
node temperatures will correspond to the relative node numbers set

up by the preprocessor, not the actual node numbers set by the user.
The preprocessor lists out all of the input data. Immediately after
the input node data a dictionary of relative node numbers versus
actual node numbers is listed. By utilizing it a user can correlate

the relative node temperatures with his actual numbers.

In addition to the various subroutines for printing output, there
are several plotting subroutines available. However, the plotting
subroutines require that the information to be plotted exist as

arrays. In order to plot transient temperatures versus time it is

necessary for the user to store the information until the transient
is completed and then perform plotting. The operations to do this
could be as follows:
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(Col) 8 12
BCD 30UTPUT CALLS

PRNTMP
ADDFIX ( ,KlO ,KlO)
ST0ARY (K1, Al, TIMEM)
ST0ARY (Kl0,A2, Tl)

END

The Output Calls will be performed at problem start time and on
the output interval until problem stop time is reached. A 100
minute transient with an output interval of 5 minutes would cause
the Output Calls operations to be performed 21 times. With constant
ten initially at zero, the ADDFIX call will add an integer one to it
each time it is performed. The ST0ARY call causes the third argu-
ments (TIMEM and TI) to be stored into the KI0th location of array
one and two respectively. Therefore, Al and A2 must contain at
least as many data locations as required to accommodate the STOARY
operations. When the transient analysis is completed, Al and A2
contain array data suitable for plotting or printing in a columnar
format. Such operations are easily called for in the Execution
Operations Block immediately following the network solution call.

The above data and operations blocks constitute a problem data
deck which must be terminated by the following card:

(Col) 8 12

BCD 3END OF DATA

4.2.8 Parameter Runs

Parametric analysis which does not involve network or operations
changes to the original problem may be performed on the same com-
puter run. Only data values such as output page heading, tempera-
tures, capacitances, conductance, constants and arrays may be
changed. The data change blocks must all be specified whether changes
occur in the block or not and the data input is identical to the
preceding discussion with the exception of conductors. When
specifying new conductances the adjoining node information is deleted;
only the conductor number and value are required.

Two parametric run options are available, INITIAL and/or FINAL,
and they may be used several times within the problem data deck.
The problem data deck as initially input is referred to as the
original problem. Any and all INITIAL parameter runs refer to it
exactly as it was input. The FINAL parameter run refers to the
just completed problem exactly as terminated. When two INITIAL
parameter runs are attached to the end of a problem data deck, they
both refer to the original problem at start time. However, when
two FINAL parameter runs are attached to the end of a problem data
deck, the first refers to the original as terminated, and the
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second refers to the first FINAL parameter run as completed. The
SINDA control cards necessary to specify a parameter run is as
follows:

(Col) 8 12

BCD 3INITIAL PARAMETERS
or BCD 3FINAL PARAMETERS

END
BCD 3NODE DATA
END
BCD 3CONDUCTOR DATA
END
BCD 3CONSTANTS DATA
END
BCD 3ARPAY DATA
END

The parameter run decks are inserted in the problem data deck
immediately preceding the BCD 3END OF DATA card. After the BCD
parameter card, the user may insert additional BCD data to replace
the original problem output page heading. When changing an array,
the entire new array must be input and be exactly the length of its
original. Parameter runs conserve machine time mainly due to not
having to reform the pseudo-compute sequence. If a user desires,
he may accomplish FINAL parameter runs by calling the network
execution subroutine twice in the EXECUTION block and inserting
the necessary calls to modify data values between them.

4.2.9 Store and Recall Problem Options

The capability to store complete problems on and recall them
from magnetic tape is a useful feature of SINDA. While the para-
meter run capability is useful for performing parametric analysis in
the same run, the store and recall capability allows an indefinite
time lapse between parametric analysis. In addition, long duration
problems may be broken into several short duration runs. If a
parametric analysis is such that the first portion of the runs are
identical, then the problem can be run for the constant portion,
stored and then recalled as many times as necessary.

The store problem feature is achieved by a user initiated
subroutine call which is as follows:

(Col) 12

STOREP (KX)

where KX refers to a constant location containing an alphanumeric
identification name for the stored problem. The call may be used
as many times as desired but the user must insure that each activa-
tion references a unique name. It is up to the user to insure that
the stored problem tapes have been mounted with the "write" ring in,
are properly positioned and that the computer operator has been
instructed to save the tapes. The user should check Appendix E,
Control Cards and Deck Setup to determine which tapes his problem
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is being stored on and the control cards, if any, for assigning it

within the system.

The recall problem feature is a SINDA preprocessor option which

is activated by the following card;

(Col) 1 13

RECALL AAAAAA

where AAAAAA is the alphanumeric identification name of the stored

problem. This single card replaces the blank card preceding the

problem data deck and must be followed by initial parameter and block

data change cards exactly as shown for parameter runs, including the

first BCD 3 parameter and END cards and also the BCD 3END OF DATA
card. The stored problem identified will be searched for and brought
into core from the two storage tapes. Any data changes specified

will be performed and then control is passed to the first subroutine

call in the EXECUTION block. The user must remember that the recalled

problem contains the STOREP call. The user is again advised to con-

sult Section E for the tape unit designations, control card require-

ments and operator instructions necessary for mounting the stored

problem tape.

4.2.10 Dictionary Printout

4.2.10.1 Node Data

A dictionary of relative vs. actual node numbers is automatically

printed under BCD 3NODE DATA BLOCK.

4.2.10.2 Conductor Data

A dictionary of relative vs. actual conductor numbers is automatically

printed under BCD 3CONDUCTOR DATA BLOCK.

4.2.10.3 Constants Data

A dictionary of relative vs. actual constants numbers printout is

optional under BCD 3CONSTANTS DATA BLOCK. For a printout, a * in

Col. 80 is used.

(Col) 8 12 80

BCD 3CONSTANTS DATA *

4.2.10.4 Array Data

A dictionary of actual array number vs. FORTRAN addresses printout

is optional under BCD 3ARRAY DATA.

(Col) 8 12 80

BCD 3ARRAY DATA *
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5. ERROR MESSAGES

Due to the variety of subroutines available and the variable

number of arguments which some of them have, no check is made to
determine if a subroutine has the correct number of arguments. An
incorrect number of arguments on a subroutine call will generally
cause job termination immediately after successful compilation,
usually without any error message. If the above occurs, the user
should closely check the number of arguments for his subroutine calls.

Numerous error messages can be output by the preprocessor. These
error messages are listed below and grouped according to various
preprocessor functions. All error messages are preceded by three
asterisks which have been deleted below. Self-explanatory messages
are not enlarged upon; note that all messages are outputted on
one line except 5.1.24..

5.1 Processing Data Blocks

5.1.1 DATA BLOCKS IN IMPROPER ORDER OR ILLEGAL BLOCK DESIGNATION
ENCOUNTERED

5.1.2 THE PSEUDO COMPUTE SEQUENCE INDICATOR MUST BE EITHER SPCS OR
LPCS, AND START IN COLUMN 21

5.1.3 AN IMBEDDED BLANK HAS BEEN ENCOUNTERED IN THE LAST LINE

5.1.4 BLANK COUNT OF TEN HAS BEEN EXCEEDED

5.1.5 INTEGER FIELD EXCEEDS 10

5.1.6 REAL NUMBER FIELD EXCEEDS 20

5.1.7 ALPHANUMERIC FIELD EXCEEDS 6

5.1.8 COND NUMBER, XXXXX, IS THE DUPLICATE OF THE XXXXXTH CONDUCTOR

5.1.9 MULTIPLE DECIMAL POINTS HAVE BEEN ENCOUNTERED

5.1.10 TWo CONSECUTIVE CONDUCTOR VALUES HAVE BEEN ENCOUNTERED

5.1.11 THE NODE NUMBER, ENTRY XXX, MUST BE AN INTEGER

5.1.12 THE TEMPERATURE VALUE, ENTRY XXX, MUST BE A FLOATING POINT NUMBER

5.1.13 THE CAPACITANCE VALUE, ENTRY XXX, MUST BE A FLOATING POINT NUMBER

5.1.14 THE NUMBER OF NODES, ENTRY XXX, MUST BE A POSITIVE INTEGER

5.1.15 THE NODE INCREMENT, ENTRY XXX, MUST BE A NON-ZERO INTEGER
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5.1.16 THE ABOVE CARD HAS XXX ENTRIES, THE NUMBER OF ENTRIES MUST BE A
MULTIPLE OF XXX

5.1.17 THE ABOVE CARD HAS XXX ENTRIES, THE NUMBER OF ENTRIES MUST BE A
MULTIPLE OF XXX OR XXX

5.1.18 NODE NUMBER XXXXX HAS BEEN DEFINED TWICE AT RELATIVE LOCATIONS
XXXXX AND XXXXX

5.1.19 COLUMNS 8,9,10 CONTAIN THE ILLEGAL CODE XXX

5.1.20 THE ARRAY SPECIFICATION, ENTRY XXX, MUST BEGIN WITH THE LETTER A

5.1.21 THE CONSTANT SPECIFICATION, ENTRY XXX, MUST BE EITHER A FLOATING
POINT NUMBER OR BEGIN WITH THE LETTER K

5.1.22 THE ARRAY OR CONSTANT IDENTIFICATION XXXX MUST BE A POSITIVE INTEGER

5.1.23 THE NODE NUMBER MUST BE GREATER THAN 0 FOR THIS OPTION

5.1.24 BOTH ARRAY SPECIFICATIONS, ENTRIES XXX AND XXX, ARE FLOATING

POINT NUMBERS

AT LEAST ONE OF THESE MUST IDENTIFY AN ARRAY NUMBER

5.1.25 THE CONDUCTOR NUMBER, ENTRY XXX, MUST BE AN INTEGER

5.1.26 TIlE CONDUCTANCE VALUE, ENTRY XXX, MUST BE A FLOATING POINT hNUMBER

5.1.27 ACTUAL NODE NUMBER XXXXX WAS NOT SPECIFIED IN THE NODE DATA BLOCK

5.1.28 THE NUMBER OF CONDUCTORS, ENTRY XXX, MUST BE A POSITIVE INTEGER

5.1.29 THE CONDUCTOR INCREMENT, ENTRY XXX, MUST BE A NON-ZERO INTEGER

5.1.30 THE NODE INCREMENT, ENTRY XXX, MUST BE INTEGER

5.1.31 ENTRY XXX IS ASSUMED TO BE A FIXED CONSTANT NAE, BUT THE NAME

INPUT IS NOT IN THE LIST OF FIXED CONSTANTS

5.1.32 CONSTANT NUMBER XXXXX IS THE DUPLICATE OF THE XXXXX RELATIVE

CONSTANT

5.1.33 ARRAY NUMBER XXXXX HAS ALREADY BEEN INPUT AS RELATIVE NUMBER XXXXX

5.1.34 TEMPERATURE VARYING CAPACITANCE ENTRY XXXXX IN NODE DATA SPECIFIES
ARRAY XXXXX WHICH IS NOT IN THE LIST

5.1.35 TEMPERATURE VARYING CAPACITANCE ENTRY XXXXX IN NODE DATA SPECIFIES
CONSTANT XXXXX WHICH IS NOT IN THE LIST

5.1.36 TEMPERATURE VARYING CONDUCTANCE ENTRY XXXXX IN CONDUCTOR DATA
SPECIFIES ARRAY XXXXX WHICH IS NOT IN THE LIST
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5.1.37 TEMPERATURE VARYING CONDUCTANCE ENTRY XXXXX IN CONDUCTOR DATA

SPECIFIES CONSTANT XXXXX WHICH IS NOT IN THE LIST

5.1.38 THE PROGRAM EXPECTED ENTRY XXX ABOVE TO BE AN INTEGER ARRAY

NUMBER. A NON-INTEGER WAS ENCOUNTERED.

5.2 Forming Pseudo Compute Sequence

5.2.1 RELATIVE NODE NUMBER (XXXXX) IS NOT CONNECTED TO ANY OTHER NODE

5.3 Processing Program Blocks

5.3.1 EXECUTION BLOCKS IN IMPROPER ORDER OR ILLEGAL BLOCK DESIGNATION

ENCOUNTERED

5.3.2 VARIABLE DESIGNATOR, AAA, NOT DEFINED FOR GENERAL PROBLEM

Explanation: Some alpha character other than K or A has been

used to reference a data block. In a thermal

problem a designator other than G, K, or A is

assumed to be refezenclng the nodal block.

5.3.3 MISSING NODE NUMBER, XXXXX

5.3.4 MISSING CONDUCTOR NUMBER, XXXXX

5.3.5 MISSING CONSTANT NUMBER,.XXXXX

5.3.6 MISSING ARRAY NUMBER, XXXXX

5.3.7 FIXED CONSTANT NAME, AAAAA, NOT IN LIST.

5.3.8 NUMBER OF SUBROUTINES REQUESTED EXCEEDS 75.

Explanation: More than 75 unique subroutines have been called.

5.4 Processing Parameter Changes

5.4.1 NODE NUMBER, XXXXX, WAS NOT DEFINED IN THE ORIGINAL PROBLEM.

5.4.2 .CONDUCTOR NUMBER, XXXXX, WAS NOT DEFINED IN THE .RIGINAL PROBLEM.

5.4.3 CONSTANT NUMBER, XXXXX, WAS NOT DEFINED IN THE ORIGINAL PROBLEM.

5.4.4 ARRAY NUMBER, XXXXX, WAS NOT DEFINED IN THE ORIGINAL PROBLEM.

5.4.5 CONSTANTS BLOCK WAS EMPTY IN THE ORIGINAL PROBLEM.

5.4.6 ARRAY BLOCK WAS EMPTY IN THE ORIGINAL PROBLEM.

5.4.7 THE ABOVE ARRAY IS LONGER THAN THE ARRAY DEFINED IN THE

ORIGINAL PROBLEM
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5.4.8 NODE OR CONDUCTOR DATA IS NOT ALLOWED IN A GENERAL PROBLEM

5.5 Terminations Due to Errors (No Preceding Asterisks)

5.5.1 ERROR TERMINATION - LOADING IS SUPPRESSED

5.5.2 THE NUMBER OF ERROR MESSAGES EXCEEDS 200 - RUN TERMINATED
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A. SINDA SUBROUTINES

A.I Alphabetical Listing

Name Page Name Page Name Page Name Page

AABB A.6-11 CLEANV ** DID1MI A.4-5 ELEADD A.6-6

ABLATS A.8-5 CLEANS ** DIDIWM A.4-4 ELEDIV A.6-6

ACALC * CMPXDV A.3-10 D1D2DA A.4-8 ELEINV A.6-6

ACSARY A.5-5 CMPXNP A.3-7 DlD2WM A.4-8 ELEMUL A.6-6

ADARIN A.3-9 CMPXSR A.5-7 D1IMDl A.4-6 ELESUB A.6-6

ADD A.3-4 CNPYI A.3-7 DIIMIM A.4-6 ENDMOP A.6-17

ADDALP A.6-9 CNBACK A.2-10 DINMWM A.4-6 ENDPLT **

ADDARY A.3-4 CNDUFR A.2-8 DIMDG1 A.4-4 EOF A.7-10

ADDFIX A.3-4 CNEXPN A.2-7 D14DG2 A.4-9 EOFTV **

ADDINV A.3-9 CNFAST A.2-6 DIMIDA A.4-4 ERRZZ **

ALCORD * CNFRDL A.2-5 D1M1MD A.4-5 EXITG **

ALPHAA A.6-9 CNFRED A.2-5 DIM1M A.4-5 EXPARY A.5-6

ARCCOS A.5-5 CNFWBK A.2-9 D1M2DA A.4-9 EXPNTL A.5-6

ARCSIN A.5-5 CNQUIK A.2-12 D1M2MD A.4-9 FILE A.6-17

ARCTAN A.5-5 CNVARB A.2.11 DlM2WM A.4-9 FIX A.3-10

ARINDV A.3-9 COLMAX A.6-13 D11CYL A.4-10 FLGSET *

ARYADD A.3-4 COLMIX A.6-14 D11DAI A.4-5 FLIP A.3-12

ARYDIV A.3-8 COLMLT A.6-12 D11DIM A.4-5 FLOAT A.3-10

ARYEXP A.5-6 COMPAR B-6 D11MCY A.4-10 FMTSG **

ARYINV A.3-9 COPY D1*** DMDA A.4-4 FONT2 **

ARYMNS A.3-11 COSARY A.5-4 D1NMDI A.4-5 FORMIT *

ARYMPY A.3-6 CPRINT A.7-3 D12CYL A.4-10 FULSYM A.6-5

ARYPLS A.3-11 CSGDMP A.2-13 D12MCY A.4-10 GENALP A.6-4

ARYSTO A.3-13 CSQRI A.5-7 D12-DA A.4-8 GENARY A.3-12

ARYSUB A.3-5 CTCALC * D2DEGl A.4-13 GENCOL A.6-4

ASNARY A.5-5 CVQ1HT A.4-6 D2DEG2 A.4-13 GENM ***

ASSMBL A.6-12 CVQIWM A.4-6 D2D1WM A.4-13 GENST ***

ATNARY A.5-5 DATE ** D2D2WM A.4-13 GET **

BABT A.6-11 DA11CY A.4-10 D21XD1 A.4-13 GETCZZ **

BCALC * DA1MC A.4-10 D2MXD2 A.4-13 GETPR *

BIVLV A.8-4 DA12CY A.4-10 D2MX1M A.4-13 GPRINT A.7-3

BKARAD A.3-3 DAl2MC A.4-10 D2MX2M A.4-13 GRIDG **

BLDARY A.3-13 DELTA * D3DEG1 A.4-14 GSLOPE A.4-11

BRKARY A.3-13 DFLAG * D3DIWM A.4-14 HEDCOL *

BTAB A.6-11 DFPRNT * EFABS A.6-8 IDFNZZ **

BVSPDA A.4-12 DIAG A.6-5 EFACS A.6-7 IFMZZ **

BVSPSA A.4-12 DIAGAD A.6-5 EFASN A.6-7 INITZZ **

BVTRNI A.4-12 DISAS A.6-12 EFATN A.6-7 INPUTG ***

BVTRN2 A.4-12 DIVARY A.3-8 EFCOS A.6-7 INPUTT ***

CALL A.6-18 DIVFIX A.3-8 EFEXP A.6-8 INTRFC A.3-10
CDIVI A.3-10 DIVIDE A.3-8 EFFEMS A.8-9 INVRSE A.6-10

CINCOS A.5-4 DTPRNT * EFFG A.8-2 IRRADE A.8-8

CINDSL A. 2-3 DIDEG1 A.4-4 EFLOG A.6-8 IRRADI A.8-8

CINDSM A.2-4 DIDEG2 A.4-8 EFPOW A.6-8 ITRATE A.4-15

CINDSS A.2-2 DIDGlI A.4-5 EFSIN A.6-7 JACOBI A.6-17

CINSIN A.5-4 DIDIDA A.4-4 EFSQR A.6-8 JOIN A.3-16

CINTAN A.5-4 DID1IM A.4-5 EFTAN A.6-7 KADZ **

*Internal, STEP Subroutine; **Internal, SC-4060 Plot Pkg.;***Internal
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Name Page Name Page Name Page Name Page

KALFIL B-13 PLOTL2 A.7- 7  ROWMLT A.6-12 SUiARY A. 3-4
KALOBS B-9 PLOTX1 A.7-7 RSETMG ** SYMDAD A.6-14
LABELG ** PLOTX2 A.7-7 RTPOLY *** SYMFRC A.6-5
LAGRAN A.4-3 PLOTX3 A.7-8 SAVDER * SYMFUL A.6-5
LEGNDG ** PLOTX4 A.7-8 SCALAR A.6-9 SYMINV A.6-14
LGRNDA A.4-3 PLTND ** SCALE A.3-14 SYMLST A.7-11
LINESG ** PLYARY A.5-9 SCALZZ ** SYMREM A.6-14
LIST A.7-11 PLYAWM A.5-9 SCCTZZ ** SYMREP A.6-14
LISTIT * PLYEVL A.6-15 SCLDEP A.3-7 TANARY A.5-5
LOCZ ** PLYNML A.5-9 SCLIND A.3-7 TDOT A.5-10
LOGE A.5-6 PNCHMA A.7-6 SCRPFA A.8-10 TESTMP B-13
LOGEAR A.5-6 PNTABL A.7-12 SEGMTG ** TITLEG **
LOGT A.5-6 POINTG ** SETMNS A.3-11 TOFDAY *
LOGTAR A.5-6 POLMLT A.6-15 SETPLS A.3-11 TOPLIN ***
LQDVAP A.8-7 POLSOV A.6-15 SETSMG ** TPRINT A.7-3
LQSLTR A.8-6 POLVAL A.6-15 SETUP *** TRANS A.6-10
LSTAPE A.6-17 PREPRN ** SETUPC ** TRNBY1 ***
LSTSQU A.5-10 PRESS A.8-2 SCRIDG ** TRNBV2 ***
MASS A.6-19 PRINT A.7-4 SHFTV A.3-12 TRPZD A.5-3
MATADD A.6-9 PRINTA A.7-5 SHFTVR A.3-12 TRPZDA A.5-3
MATRD * PRINTL A.7-4 SHIFT A.6-13 UNDIAG A.6-5
MATRIX A.6-9 PRNDER * SHUFL A.6-13 UNITY A.6-4
MATWRT * PRNDIF * SIGMA A.6-4 UNPAC **
MAXDAR A.3-17 PRNTMA A.7-5 SIMEQN A.5-9 UNSCZZ **
METAZZ ** PRNTMI A.7-5 SINARY A.5-4 UPDMOP ***
MLTPLG ** PRNTMP A.7-4 SKPLIN *** VARCCM A.4-7

MLTPLY A.3-6 PSINTR A.4-11 SLDARD A.3-15 VAFCSM A.4-7
MODES A.6-18 PSNTWM A.4-11 SLDARY A.3-15 VARGSM A.4-7
MODESG ** PUNCH A.7-11 SLRADE A.8-9 VARCI A.4-7
MPYARY A.3-6 PUNCHA A.7-6 SLRADI A.8-9 VARC2 A.4-7
MPYFIX A.3-6 PUT ** SMOPAS *** VARGCM A.4-7
MULT A.6-10 PUTCZZ ** SMPINT A.5-3 VARGSM A.4-7
MULTY * PYMLT1 *** SPLIT A.3-16 VARGI A.4-7
MXDRAL A.3-17 QCALC * SPREAD A.3-16 VARG2 A.4-7
NEWRT4 A.5-8 QFORCE A.8-3 SPRESS A.8-2 VECIG **
NEWTRT A.5-8 QFPRING A.7-3 SQROOT A.5-7 VECSZZ **
NNREAD QINTEG A.8-3 SQROTI A.5-7 VECTZZ **
NONLIN *** QINTGI A.8-3 STEP App. C WRITE A.7-10

NTABS *** QIPRNT A.7-3 STFSEP A.3-14 WRTARY **
NUBRG ** QMETER A.8-3 STFSEQ A.3-14 WRTLOB **
NVECZ ** QMIRI A.8-3 STFSQS A.3-14 XLOG2U ***
OBJCTG ** QNPRNT A.7-3 STIFF A.6-20 XMODZ **
ONES A.6-4 RCDUMIP A.2-13 STNDRD A.7-4 YMODZ **
OUTQZZ ** RDTNQS A.8-3 ST0ARY A.3-13 ZERO A.6-4
OUT6ZZ ** READ A.7-10 STOREP Sect. 4
PACKZZ ** REDUCE *** STORMA A.3-15

PAGEG ** REFLCT A.6-13 SUB A.3-5
PFLAG RELACT * SUBARY A.3-5
PLOTMP B-7 REWIND A.7-10 SUBFIX A.3-5
PLOTL1 A.7-7 RGRIDG ** SUBJEG **

56A.

A.1--2



k ES YSTEjMS
REOONDO BEACH. CALIFONiA

A.2 EXECUTION SUBROUTINES (NETWORK SOLUTION & OUTPUT)

Network Solution Page

Steady State

CINDSS Block iteration A.2-2

CINDSL Successive point iteration A.2-3

CINDSM Modified CINDSL, radiation dominated problem A.2-4

Transient

CNFRWD
CNFRDL Explicit forward differencing A.2-5

CNFAST Accelerated forward differencing A.2-6

CNEXPN Explicit exponential prediction A.2-7

CNDUFR Stable explicit finite differencing A.2-8

CNFWBK Implicit forward-backward differencing A.2-9

CNBACK Implicit backward differencing A.2-10

CNVARB Combination of backward and forward-backward A.2-11
differencing

CNQUIK Unconditionally stable explicit method A.2-12

Output

CS GDMPRCDUMPj Network criteria and linkage A.2-13
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NETWORK SOLUTION -- STEADY STATE

EXECUTION SUBROUTINE NAME: CINDSS*

PURPOSE:

This subroutine ignores the capacitance values of diffusion nodes to cal-

culate the network steady state solution. Due to the SPCS requirement,

diffusion nodes are solved by a "block" iterative method. However, if.

all diffusion nodes were specified as arithmetic nodes they would be

calculated by a "successive point" iterative method. The user is required

to specify the maximum number of iterations to be performed in attempting

to reach the steady state solution (control constant NLOOP) and the

relaxation criteria which determines when it has been reached (DRLXCA for

diffusion nodes and/or ARLXCA for arithmetic nodes). The subroutine will

continue to iterate until one of the above criteria is met. If the itera-

tion count exceeds NLOOP an appropriate message is printed. Variables 1

and Output Calls are performed at the start and Variables 2 and Output Calls

are performed upon completion. If not specified, control constants DAMPD

and DAMPA are set at 1.0. They are used as multipliers times the new

temperatures while 1.0 minus their value is used as multipliers times the old

temperatures in order to "weight" the returned answer. This weighting of so

much new and so much old is useful for damping oscillations due to non-

linearities. They may also be used to achieve over relaxation.

If a series of steady state solutions at various times are desired it can

be accomplished by specifying control constants TIMEND and OUTPUT. OUTPUT
will be used both as the output interval and the computation interval. In

this case appropriate calls would have to be made in Variables 1 to modify

boundary conditions with time.

If desired, the CINDSS call can be followed by a call to one of the transient

solution subroutines which has the same SPCS requirement. In this manner

the steady state solution becomes the initial conditions for the transient

analysis. However, since CINDSS utilizes control constants TIMEND and

OUTPUT the user must specify their values in the execution block after

the steady state call and prior to the transient analysis call.

RESTRICTIONS:

The SPCS option is required. Diffusion nodes receive a "block" iteration

while arithmetic nodes receive a "successive point" iteration, no accelera-

tion features are utilized. Control constants NLOOP and DRLXCA and/or

ARLXCA must be specified. Successive steady state solutions can be obtained

by specifying control constants TIMEND and OUTPUT. Other control constants

which are activated or used are: LOOPCT, DRLXCC and/or ARLXCC, TIMEN, TIMEM,

TIMEO, DAMPD, DAMPA, DTIMEU, LINECT and PAGECT. Control constant OPEITR is
checked for output each iteration.

CALLING SEQUENCE: CINDSS

*This subroutine utilizes one dynamic storage core location for each

diffusion node.

8<A2-2
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TW:OhRK SOLUTION -- STEADY STATE

EXECUTION SUBROUTINE NAME: CINDSL*

PURPOSE:

This subroutine ignores the capacitance values of diffusion nodes to
calculate the network steady state solution. Since this subroutine has the

LPCS requirement, both diffusion and arithmetic nodes receive a "successive

point" iteration. In addition, on every third iteration,a linear extra-

polation is performed on the error function plot of each node in an attempt
to accelerate convergence. The user is required to specify the maximum
number of iterations to be performed in attempting to reach the steady state

solution (control constant NLO0P) and the relaxation criteria which

determines when it has been reached (DRLXCA for diffusion nodes and/or ARLXCA
for arithmetic nodes). The subroutine will continue to iterate until one of

the above criteria is met. If the iteration count exceeds NLOOP an appro-
priate message is printed. Variables 1 and Output Calls are performed at
the start and Variables 2 and Output Calls are performed upon completion.

If not specified, control constants DAMPD and DAMPA are set at 1.0. They
are used as multipliers times the new temperatures while 1.0 minus their
value is used as multipliers times the old temperatures in order to "weight"

the returned answer. This weighting of so much new and so much old is use-
ful for damping oscillations due to nonlinearities. They may also be used

to achieve over relaxation.

If a series of steady state solutions at various times are desired it can

be accomplished by specifying control constants TIMEND and OUTPUT. OUTPUT

will be used both as the output interval and the computation interval. In
this case appropriate calls would have to be made in Variables 1 to modify

boundary conditions with time.

If desired, the CINDSL call can be followed by a call to one of the
transient solution subroutines which has the same LPCS requirement. In
this manner the steady state solution becomes the initial conditions for
the transient analysis. However, since CINDSL utilizes control constants
TIMEND and OUTPUT the user must specify their values in the execution
block after the steady state call and prior to the transient analysis call.

RESTRICTIONS:

The LPCS option is required. Diffusion and arithmetic nodes receive a
"successive point" iteration and an extrapolation method of acceleration.
Control constants NLOOP and DRLXCA and/or ARLXCA must be specified.
Successive steady state solutions can be obtained by specifying control
constants TIMEND and OUTPUT. Other control constants which are activated
or used are: LOOPCT, DRLXCC, and/or ARLXCC, TIMEN, TIMEM, TIMEO, DAMPD,
DAMPA, DTIMEU, LINECT and PAGECT. Control constant OPEITR is checked
for output each iteration.

CALLING SEQUENCE: CINDSL

*This subroutine utilizes two dynamic storage core locations for each

diffusion and arithmetic code.
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NETWORK SOLUTION -- STEADY STATE

EXECUTION SUBROUTINE NAME: CINDSM

PURPOSE:

This is a steady state execution subroutine specifically designed for

radiation dominated problems. The CINDSL subroutine is the base and was

modified to operate in a quasi-linear manner. The problem is linearized

(i.e., effective radiation evaluated and held constant) and then the
linearized problem is solved. The nonlinearities are then revaluated and
fixed (linearized) and the problem is again solved. This linearization

frequency is based on a new control constant LAXFAC (an integer). The
user must satisfy the control constant requirements for CINDSL.

RESTRICTIONS:

The long psuedo-compute sequence is required, control constant LAXFAC must
be specified. See subroutine CINDSL.

CALLING SEQUENCE: CINDSM

60<
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NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAMES: CNFRWD* or CNFRDL*

PURPOSE:

These subroutines perform transient thermal analysis by the explicit forward

differencinn method. The stability criteria of each diffusion node is

C. * Ti(new)-Ti(old) = i=OE G. * T(old) - T.(old) Q At

j#i
G. represents the conductors into node i, Q.i the source location,

and Ci the nodal capacity

The stability criteria of each diffusion node is calculated and the

minimum value is placed in control constant CSGMIN. The time step used

(control constant DTIMEU) is calculated as 95% of CSGMIN divided by

CSGFAC. Control constant CSGFAC is set at 1.0 unless specified

larger by the user. A "look ahead" feature is used when calculating DTIMEU.

If one time step will pass the output time point the time step is set to
come out exactly on the output time point; if two time steps will pass

the output time point, the time step is set so that two time steps will come

out exactly on the output time point. DTIMEU is also compared to DTIHEH
and DTIMEL. If DTIMEU exceeds DTIMEH it is set equal to it; if DTIMEU is

less than DTIMEL the problem is terminated. If no input values are specified,
DTIMEL is set at zero and DTIMEHI it is set at infinity. The maximum tempera-
ture change calculated over an iteration is placed in control constant DTMPCC
and/or ATMPCC. They are compared to DTMPCA and/or ATM PCA respectively and
if larger cause DTIMEU to be modified so that they campare as equal to or
less than DTMPCA and/or ATMPCA. If DTMPCA and/or ATMPCA are not specified

they are set at infinity.

All diffusion nodes are calculated prior to solving the arithmetic nodes.

The user may iterate the arithmetic node solution by specifying control
constants NLOOP and ARLXCA. If the arithmetic node iteration count exceeds

NLOOP the answers are accepted as is, and the subroutine continues without

any user notification. In addition, the user may specify control constant
DAMPA in order to dampen possible oscillations due to nonlinearities. The

arithmetic nodes may be used to specify an incompressible pressure or radiosity

network. In this manner they would be solved implicity each time step but
evaluation of temperature varying properties would suffer a one time step lag.

RESTRICTIONS:

The SPCS option is required for CNFRWD, the LPCS option is required for
CNFRDL, and control constants TIMEND and OUTPUT must be specified. Problem

start time, if other than zero, may be specified as TIMEO. Other control

constants used or activated are: TIMEN, TIMEM, CSGMIN, CSGFAC, DTIMEU,
DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, NLOOP, LOOPCT, DAMPA, ARLXCA, ARLXCC,

OPEITR, BACKUP, LINECT and PAGECT.

CALLING SEQUENCE: CNFRWD or CNFRDL

* These subroutines utilize one dynamic storage core location for each
diffusion and arithmetic node.
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EECUTION SUBROUTINE NILME: CNFASI1

PUPPOSE:

This subroutine is a modified version of CNFRWD which allows the user to

specify the minimum time step to be taken. The time step calculations
proceed exactly as in CNFRWD until the check with DTIMEL is made. If

DTIMI is less than DTIDEL it is set equal to it. As each node is cal-

culated its CSGMIN is obtained and compared to DTIMEU. If equal to or

greater, the nodal calculation is identical to CNFRVD. If the CSGMIN for

a node is less than DTIIEU the node receives a steady state calculation.

If only a small portion of the nodes in a system receive the steady state

calculation the answers are generally reasonable. However, as the number

of nodes receiveing steady state calculations increases, so do the solution

inaccuracies.

RESTRICTIONS:

The SPCS option is required and control constants TIMEID and OUTPUT must

be specified. The checks on control constants D~PCA, AT~PCA and BACKIP
are not performed. Other control constants which are used or activated
are: TIEN, T=-I, TIEO, CSCGI:, CSGFAC, DT~RIEU, DTIMEL, DTIMEH, D~PCC,

ATlPCC, DAMPA, ARLXCA, ARLXCC, NLOP, LO0PCT, LINECT and PAGECT.

CALLING SEQUENCE: CNFAST

* This subroutine utilizes one dynamic storage core location for each
diffusion node.
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NETTlOP( SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAME: CNEXPN*

PURPOSE:

This subroutine performs transient thermal analysis by the exponential
prediction method and the solution equation is of the following form:

EG.T. Q AA
, j 3 i C C

T = -e + T.ei G 1

For the derivation the reader should note the reference below. The above
equation is unconditionally stable no matter what size time step is taken
and reduces to the steady state equation for an infinite time step. However,
stability is not to be confused with accuracy. Time steps larger than those
taken with CNFRWD remain stable but tend to lose or gain energy in the system.
For this reason, this subroutine is not recommended where accuracy is sought.
However, it is suitable for parametric analysis where trends are sought and a
more accurate method will be utilized for a final analysis.

The inner workings of the subroutine are virtually identical to CNFRVI) with
the exception of the solution equation and the use of CSGFAC. The time step
used (DTL-EEU) is calculated as CSGiMIN times CSGFAC. The look ahead feature
for calculating the time step is identical as are the checks with DTIMEH,
DTIDEL and DTMPCA. The diffusion nodes are calculated prior to the arithmetic
nodes and the arithmetic nodes utilize NLOOP, ARLXCA and DAMPA exactly the
same as CNFRWD.

RESTRICTIONS:

The SPCS option is required and control constants TIMEND and OUTPUT must be
specified. Problem start time if other than zero may be specified as TIME0.
Other control constants used or activated are: TIMEN, TIMEM, CSGMIN, CSGFAC,
DTIMEU, DTIMEL, DTIOEH, DTMPCA, DTMPCC, ATMPCA, ATUPCC, ARLXCA, ARLXCC, DAMPA,
OPEITR, BACKUP, LINECT and PAGECT.

CALLING SEQUENCE: CNEXPN

*This subroutine utilizes one dynamic storage core location for each diffusion
and arithmetic node.

Ref: Gaski, J. D. and Lewis, D. R., "Chrysler Improved Numerical Differencing
Analyzer," TN-AP-66-15, April 30, 1965, Page 5.1.3.
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EXECUTION SUBROUTINE N ME: CNDUFR

PURPOSE:

This subroutine performs an unconditionally stable explicit finite

differencing solution often called the Du Fort-Frankel method. This is

basically the forward differencing equation but the present temperature of

the node being operated on is replaced by a time weighted average of

future and past temperatures. This substitution is performed on the space

derivative temperatures only. The user may specify time steps larger than

stability criteria, but within reason.

RESTRICTIONS:

The same as CNEXPN, CSGFAC is used as a factor (>l.O) to increase the time

step used above the stability limit.

CALLING SEQUENCE: CNDUFR

Ref: DuFort, E. C. and Frankel, S. P., "Stability Conditions in the

Numerical Treatment of Parabolic Differential Equations,"

Mathematical Tables and Other Aids to Computation, Vol. 7-8,

1953-54, pp 135-152.
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NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAME: CNFWBK*

PURPOSE:

This execution subroutine performs transient thermal analysis by implicit

"forward-backward" finite differencing (Crank-Nicholson Method).

2Ci*Ti(new)-Ti(old) = G.* [T(new)+T. (old)-Ti(new)-Ti(old +2Qi *At
[T _O J [Tj j=0 j L

j#l
The LPCS option is required and allows the simultaneous set of equations to
be solved by "successive point" iterations. During the first iteration for
a time step, the capacitance values are doubled and divided by the time step
and the energy transfer rates based on old temperatures are added to the
source locations. Upon completing the time step the capacitance values are
returned to their original state. The iteration looping, convergence criteria
and other control constant checks are identical to CNBACK. The time step checks
and calculations and look ahead feature are identical to that used for CNBACK.

The automatic radiation transfer damping and extrapolation method of accelera-
tion mentioned under the CNBACK subroutine writeup are also employed in this
subroutine. Diffusion and/or arithmetic temperature calculations may be damped
through use of DAMPD and/or DAMPA respectively. Control constants BACKUP and
OPEITR are continuously checked. CNFWBK internally performs forward-backward
differencing of boundary conditions. For this reason the user should utilize
TIMEN as the appropriate independent variable in Variables 1 operations.

It is interesting to note the CNFWBK generally converges in 25% fewer itera-
tions than CNBACK. The probable reason for this is that the boundary of the
mathematical system is better defined. While every future temperature node
under CNBACK is connected to its present temperature, under CNFWBK every future
temperature node is also receiving an impressed source based on the present
temperature.

RESTRICTIONS:

The LPCS option is required. Control constants TIMEND, OUTPUT DTIMEI NLOOP and
DRLXCA and/or ARLXCA must be specified. Other control constants which are used
or activated are: TIMEN, TIMEO, TIMEM, CSGMIN, DTIMEU, DTIMEH, DTMPCA, DTMPCC,
ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/or ARLXCC, LOOPCT, BACKUP, OPEITR,
LINECT and PAGECT.

CALLING SEQUENCE: CNFWBK

*This subroutine utilizes three dynamic storage core locations for each
diffusion node and one for each arithmetic and boundary node.
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EXECUTION SUBROUTINE NAME: CNBACK

PURPOSE:

This subroutine performs transient thermal analysis by implicit backward
differencing.

C *[Ti(new) - Ti(old)1 =EJ * T (new) - T (new) + Q *At

j#i

The LPCS option is required and allows the simultaneous set of equations to
be solved by "successive point" iteration. Each third iteration, diffusion
node temperatures which trace a continuous decreasing slope receive an
extrapolation on their error function curve in an attempt to accelerate
convergence. For convergence criteria the user is required to specify N140P
and DRLXCA and or ARLXCA. If the number of iterations during a time step
exceeds NLOOP a message is printed but the problem proceeds.

Variables 1 is performed only once for each time step. Since this sub-
routine is implicit the user must specify the time step to be used as DTIMEI
in addition to TIMEND and OUTPUT. The look ahead feature for the time step
calculation in CNFRWD is used as are the checks for DTIMEH, DTRPCA and
ATMPCA but not DTIMEL. Damping of the solutions can be achieved through use
of control constants DAMPD and/or DAMPA. Control constants BACKUP and OPEITR
are continuously checked.

Implicit methods of solution often oscillate at start up or for boundary
step changes when radiation conductors are present. CNBACK contains an
automatic damping feature which is applied to radiation conductors. The
radiation transfer to a node is calculated for its present temperature and a
temporary new temperature is calculated. Then the radiation transfer is
recalculated and the final node temperature is calculated based on the
arithmetic mean of the two radiation transfer calculations. This automatic
radiation damping has proven to be quite successful and lessens the need for
use of DAMPD and DAMPA.

RESTRICTIONS:

The LPCS option is required. Control constants TIMEND, OUTPUT, DTIMEI, NLOOP
and DRLXCA and/or ARLXCA must be specified. Other control constants which
are used or activated are: TIMEN, TIMEO, TIMEM, CSGMIN, DTIMEV, DTIMEH,
DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAM{PD, DAMPA, DRLXCC and/or ARLXCC, LOOPCT,
BACUP, OPEITR, LINECT and PAGECT.

CALLING SEQUENCE: CNBACK

*This subroutine utilizes three dynamic storage core locations for each
diffusion node and one for each arithmetic and boundary node.

A.2-10
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NETWORK SOLUTION -- TRANSIENT

EXECUTION SUBROUTINE NAME: CNVARB

PURPOSE:

This subroutine applies an implicit finite differencing solution to the
diffusion equation. It internally calculates a variable beta weighting
factor (see equation 3-3, page 3-3) as the ratio of the explicit stability
criteria, CSGMIN, divided by the computation time step used, DTIMEU. A
constraint that beta must be equal to or larger than one half is imposed.
Hence, the method of solution lies somewhere between backward and forward-
backward differencing.

RESTRICTIONS:

The restrictions listed for CNFWBK and/or CNBACK apply.

CALLING SEQUENCE: CNVARB
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NETWORK SOLUTION - - TRANSIENT

EXECUTION SUBROUTINE NAME: CNQUIK

PURPOSE:

This is an unconditionally stable explicit method of solution which allows
SINDA users to employ computation intervals larger than CNFRWD. The

method of solution is a 50-50 combination of exponential predictions

(CNEXPN) and DuFort-Frankel (CNDUFR). For a temperature rising situation
the CNEXPN routine tends to undershoot while CNDUFR tends to overshoot;

however, CNQUIK falls between the two and generally yields better results

than either CNEXPN or CNDUFR.

RESTRICTIONS:

The short pseudo-compute sequence is required. The control constant re-

quirements for CNEXPN or CNDUFR apply to CNQUIK.

CALLING SEQUENCE: CNQUIK
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OUTPUT

EXECUTION SUBROUTINE NAMES: CSGDMP or RCDUMP

PURPOSE:

These subroutines are designed to aid in the checkout of thermal problem
data decks. They call upon Variables 1 (CSGDMP also calls upon Output
Calls) and then print out each actual diffusion node number with the
capacitance and CSGMIN value of the node. For each node they identify,
the attached conductors by actual conductor number, list the type and
conductance value and the actual number and type of the adjoing node.
Either the SPCS or LPCS option may be used. While the LPCS option allows
every conductor attached to a node to be identified, the SPCS option only
identifies conductors for the first node number on which they occur. After
the diffusion nodes are processed the connection information for the
arithmetic nodes is listed. After listing the above information control
passes to the next sequentially listed subroutine or CSCDMP from Output Calls.

RESTRICTIONS:

The CSGDIP subroutine is called in the Execution block, while RCDUMP can be
called from the Output Calls block. Never call either subroutine from
Variables 1 or CSGDMP from Output Calls.

CALLING SEQUENCE: CSGDMP

or RCDUMP
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Addition Operation

ADD Sums a variable number of floating point numbers A.3-4
ADDFIX Sums a variable number of integer numbers 2
ADDARY Adds the corresponding elements of two specified "

length arrays to form a third array
ARYADD Adds a constant value to every element in an array

to form a new array
SUrRY Sums an array of floating point values

Subtraction Operation

SUB Subtracts a variable number of floating point numbers A.3-5
SUBFIX Subtracts a variable number of integer numbers "
SUBARY Subtracts the corresponding elements of one array "

from another to form a third array
ARYSUB Subtracts a constant value from every element in an "

array to form a new array

Mrtiplication Operation

MLTPLY hultiplies a variable number of floating point A.3-6
numbers

MPYFIX Multiplies a variable number of integer numbers "
MPYARY Multiplies the corresponding elements of two arrays "

to form a third.
ARIuPY Multiplies each element of an array by a constant "

value to form a new array
SCLDEPJ Multiplies the dependent or independent variables of A.3-7
SCLIND) a doublet type interpolation array
CHPXMPj Multiplies two complex numbers on the corresponding "
CXPYIf elements of arrays of complex numbers

Division Operation

DIVIDE Performs a division of floating point numbers A.3-8
DIVFIX Performs a division of integer numbers "
DIVARY Divides the elements of one array into the corre- "

sponding elements of another array to produce
a third array

ARYDIV Divides each element of an array by a constant value "
to produce a new array

ARYINV Inverts each element of an array in its own location A.3-9
ARTIEV Divides each element of an array into a constant "

value to form a new array
ADDINV Calculates one over the sum of the inverses of a

variable number of arguments
ADARIN Calculates one over the sum of inverses of an array "

of values
C4PXDVI Divides two complex numbers or the corresponding A.3-10
CDIVI elements of arrays of complex numbers

70<3-
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Integer/Floating Point Conversion

FLOAT Converts an integer to a floating point number A.3-10

FIX Converts a floating point number to an integer "

INTRFC Fractures a floating point number to yield the "

largest integer value possible and the

remainder as a floating point number

Sign Conversion

SETPLS Sets the sign positive for a variable number of A.3-11

arguments

ARYPLS Sets the sign positive for data in a specified "

length array

SETMNS Sets the sign negative for a variable number of "

arguments

ARYMNS Sets the sign negative for every data value in a "

specified length array

Distribution of Array Data

SHFTV Shifts a sequence of data from one array to another A.3-12

SHFTVR Shifts a sequence of data from one array and place "

data in reverse order in another array

FLIP Reverses an array in its own array location "

GENARY Generates an array of equally incremented ascending "

values

BLDARY Builds an array from a variable number of arguments A.3-13

in the order listed

BRKARYt Distributes values from within an array to a variable "

BKARADJ number of arguments in the order listed

ST0ARY Places a value into or takes a value out of a "

ARYST0 specific array location "

STFSEP Places a constant value into a variable number of A.3-14

locations

SCALE Utilizes a constant value to multiply a variable "

number of arguments

STFSEQ Stuffs a constant value into a specified length "

STFSQSf array or group of sequential locations "

SLDARY Moves array data values back one or two positions A.3-15

SLDARDJ and updates the last one or two values "

STORMA Constructs historical data arrays during a "

transient analysis

Singlet/Doublet Array Generation

SPLIT Separates a doublet array into two singlet arrays A.3-16

JOIN Combines two singlet arrays into a doublet array

SPREAD Applies interpolation subroutine DIDlDA to two

singlet arrays to obtain an array of dependent

variables versus an array of independent

variables

A.713-2
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Comparison Operation

MAXDARt Obtains the absolute maximum difference between A.3-17
MXDRAL corresponding elements of two arrays of equal "

length N
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ADDITION OPERATION

SUBROUTINE NAMES: ADD or ADDFIX

PURPOSE:

To sum a variable number of floating point or integer numbers respectively.

S = Xi i = 1,2,3,...,N , N> 2

RESTRICTIONS:

Subroutine ADD is for floating point numbers while subroutine ADDFIX is

for integers.

CALLING SEQUENCE: ADD(Xl,X2,X3,...,XN,S)

or ADDFIX(X1,X2,X3,...,XN,S)

SUBROUTINE NAMES: ADDARY or ARYADD

PURPOSE:

Subroutine ADDARY will add the corresponding elements of two specified

length arrays to form a third array. Subroutine ARYADD will add a

constant value to every element in an array to form a new array. Their

respective operations are:

Ai = Bi + Ci , i = 1,N

or Ai = Bi + C , i = 1,N

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The

array length N must be an integer.

CALLING SEQUENCE: ADDARY(N,B(DV), C (DV),A(DV))

or ARYADD(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.

SUBROUTINE NAME: SUMARY

PURPOSE:

To sum an array of floating point values:

S = E Ai , i = 1,N

RESTRICTIONS:

The values to be summed must be floating point numbers and the array

length N must be an integer.

CALLING SEQUENCE: SUMARY (N,A(DV),S)
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SUBTRACTION OPERATICN

SUBROUTINE NAMES: SUB or SUBFIX

PURPOSE:

To subtract a variable number of floating point or integer numbers
respectively.

R = Y - E Xi , i = 1,2,3,...,N , N > 1

RESTRICTIONS:

Subroutine SUB is for floating point numbers while the subroutine SUBFIX
is for integers.

CALLING SEQUENCE: SUB(Y,X1,X2,X3,...,XN,R)

or SUBFIX(Y,Xl,X2,X3,...,XN,R)

SUBROUTINE NAMES: SUBARY or ARYSUB

PURPOSE:

Subroutine SUBARY will subtract the corresponding elements of one array
from another to form a third array. Subroutine ARYSUB will subtract a
constant value from every element in an array to form a new array. Their
respective operations are:

Ai = Bi - Ci , i = ,N

or Ai = Bi - C , i = 1,N

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
.array length N must be an integer.

CALLING SEQUENCE: SUBARY(N,B(DV),C (DV) ,A(DV)

or ARYSUB(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.
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MULTIPLICATION OPERATION

SUBROUTINE NAMES: MLTBLY or MPYFIX

PURPOSE:

To multiply a variable number of floating point or integer numbers
respectively.

P = XI*X2*X3...*X , N > 2

RESTRICTIONS:

Subroutine MLTPLY is for floating point numbers while subroutine MPYFIX
is for integers.

CALLING SEQUENCE: MLTPLY(X1,X2,X3,...,XN,P)

or MPYFIX(X1,X2,X3,...,XN,P)

SUBROUTINE NAMES: MPYARY or ARYMPY

PURPOSE:

Subroutine MPYARY will multiply the corresponding elements of two arrays
to form a third. Subroutine ARYMPY will multiply a constant value times
each element of an array to form a new array. Their respective operations
are:

Ai = Bi * Ci i = 1,N

or Ai = Bi * C , i = 1,N

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The

array length N must be an integer.

CALLING SEQUENCE:

MPYARY (N, B (DV), C (DV),A(DV))

or ARYMPY(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.
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MULTIPLICATION OPERATION

SUBROUTINE NAMES: SCLDEP or SCLIND

PURPOSE:

These subroutines will multiply the dependent or independent variables of
a doublet type interpolation array respectively.. Their respective
operations are:

Ai = X*Ai , i = 3,5,7,...,N+

or Ai = X*Ai , i = 2,4,6,...,N

RESTRICTIONS:

All values must be floating point. The arrays must contain the length
integer count as the first value which must be even.

CALLING SEQUENCE: SCLDEP(A(IC),X)

or SCLIND(A(IC),X)

SUBROUTINE NAMES: CMPXMP or CMPYI

PURPOSE:

'These subroutines will multiply two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:

A + iB = (C+ iD)*(E + iF) , i = V/T

or Aj + iBj = (Cj + iDj)*(Ej + iFj) , j = I,N

RESTRICTIONS:

All numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: CMPXMP(C,D,E,FA,B)

or CMPYI(N,C(DV),D(DV),E(DV),F(DV),A(DV),B(DV))
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DIVISION OPERATION

SUBROUTINE NAMES: DIVIDE or DIVFIX

PURPOSE:

To perform a division of floating point or integer numbers respectively.,

Q = Y/E Xi , i = 1,2,3,...,N , N > 1

RESTRICTIONS:

Subroutine DIVIDE is for floating point numbers while DIVFIX is for

integers.

CALLING SEQUENCE: DIVIDE(Y,X1,X2,X3,...,XN,Q)

or DIVFIX(Y,XI,X2,X3,...,XN,Q)

SUBROUTINE NAIMES: DIVARY or ARYDIV

PURPOSE:

Subroutine DIVARY will divide the elements of one array into the
corresponding elements of another array to produce a third array.
Subroutine ARYDIV will divide each element of an array by a constant
value to produce a new array. Their respective operations are:

A = Bi/Ci , i = 1,N

or Ai = Bi/C , i = 1,N

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE: DIVARY(N,B(DV),C(DV),A(DV))

or ARYDIV(N,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.
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DIVISION OPERATION

SUBROUTINE NAMES: ARYINV or ARINDV

PURPOSE:

Subroutine ARYINV will invert each element of an array in its own location.

Subroutine ARINDV will divide each element of an array into a constant

value to forma a new array. Their respective operations are:

Ai = 1.0/Ai , i = 1,N
or Ai = B/Ci , i = 1,N

RESTRICTIONS:

All data values must be floating point numbers. The array length N must
be an integer.

CALLING SEQUENCE: ARYINV(N,A(DV))

or ARINDV (N,C(DV),B,A(DV))

(The ARINDV answer array may be overlayed into the input array area.)

SUBROUTINE NAMES: ADDINV 'or ADARIN

PURPOSE:

Subroutine ADDINV will calculate one over the sum of the inverses of a

variable number of arguments. Subroutine ADARIN will calculate one over

the sum of inverses of an array of values. These subroutines are useful

for calculating the effective conductance of series conductors. Their

respective operations are:

Y = 1.0/(l./lY + l./X2 + .. + 1./XN), N > 2
or Y = 1.0/E(1./Xi) , i = 1,2, .... , N

RESTRICTIONS:

All data values must be floating point numbers. The array length N must

be an integer.

CALLING SEQUENCE: ADDINV (X.,X2,X3,.. .XN,Y)

or ADARIN(N,X(DV),Y)
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DIVISION OPERATION

SUBROUTINE NAMES: CMPXDV or CDIVI

PURPOSE:

These subroutines will divide two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:

A + iB = (C + iD)/(E +iF) , j = V,--

or Aj + iBj = (Cj + iDj)/(Ej + iFj) , j = 1,N

RESTRICTIONS:

All numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: CMPXDV(C,D,E,F,A,B)

or CDIVI(N,C(DV),D(DV),E(DV),F(DV),A(DV),B(DV))

INTEGER/FLOATING POINT CONVERSION

SUBROUTINE NAMES: FLOAT or FIX or INTRFC

PURPOSE:

Subroutine FLOAT will convert an integer to a floating point number.
Subroutine FIX will convert a floating point number to an integer.
Subroutine INTRFC will fracture a floating point number to yield the
largest integer value possible and the remainder or fractional portion
as a floating point number. Their respective operations are:

X= N

or N = X
or N X

Y=N

F = X-Y

RESTRICTIONS:

X and F arguments must address floating point values and the N argument
address an integer.

CALLING SEQUENCE:

FLOAT(N,X)

or FIX(X,N)

or INTRFC(X,N,F)
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SIGN CONVERSION

SUBROUTINE NAMES: SETPLS or ARYPLS

PURPOSE:

SETPLS will set the sign positive for a variable number or arguments,'
while ARYPLS will set the sign positive for every data value in a
specified length array.

RESTRICTIONS:

The values addressed may be either integers or floating point numbers.
The number (N) of data values in the array must be specified as an
integer.

CALLING SEQUENCE: SETPLS(A,B,C...)

or ARYPLS(N,A(DV))

where N may be a literal integer or the address of a location containing
an integer and A(DV) addresses the first data value in the array.

SUBROUTINE NAMES: SETMNS or ARYMNS

PURPOSE:

SETMNS will set the sign negative for a variable number of arguments,
while ARYMNS will set the sign negative for every data value in a
specified length array.

RESTRICTIONS:

The values addressed may be either integers or floating point numbers.
The number (N) of data value in the array must be specified as an
integer.

CALLING SEQUENCE: SETMNS(A,B,C,...)

or ARYMNS(N,A(DV))

where N may be a literal integer or the address of a location containing
an integer and A(DV) addresses the first data value in the array.
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DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: SHFTV or SHFTVR or FLIP

PURPOSE:

Subroutine SHFTV will shift a sequence of data from one array to another.
Subroutine SHFTVR will shift a sequence of data from one array and place
it in another array in reverse order. Subroutine FLIP will reverse an
array in its own array location. Their respective operations are:

A(i) = B(i) , i = 1,N

or A(N-i+l) = B(i) , i = 1,N

or A(i)new = A(N-i+2)old , i = 2,N+l

RESTRICTIONS:

The data values to be shifted or reversed in order may be anything. The
N must be an integer.

CALLING SEQUENCE: SHFTV(N,B(DV),A(DV))

or SHFTVR(N,B(DV) ,A(DV))

FLIP(A(IC))

The answer array may not be overlayed into the input array.

SUBROUTINE NAME: GENARY

PURPOSE:

This subroutine will generate an array of equally incremented ascending
values. The user must supply the minimum value, maximum value, number

of values in the array to be generated and the space for the generated
array.

RESTRICTIONS:

All numbers must be floating point.

CALLING SEQUENCE: GENARY(B(DV),A(DV))

where B(1) = minimum value

B(2) = maximum value

B(3) = length of array to be generated (floating point)

A.3-12



REOONDO BEAC~. CALIFO NIA

DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAME: BLDARY

PURPOSE:

This subroutine will build an array from a variable number of arguments
in the order listed. The operation performed is:

Ai = Xi , i = 1,N

RESTRICTIONS:

Data may be of any form. The subroutine obtains the integer array length

N by counting the arguments.

CALLING SEQUENCE: BLDARY(A(DV),X1.,X2,X3,...,XN)

SUBROUTINE NAME: BRKARY or BKARAD

PURPOSE:

These subroutines will distribute values from within an array to a variable
number of arguments in the order listed. The first places the value into
the location while the second adds it to what is in the location.
Respective operations are:

Xi = Ai , i = 1,N

or Xi = Xi + Ai , i = ,N

RESTRICTIONS:

Floating point numbers must be used for BKARAD. The integer array length
N is obtained by the routines by counting the number of arguments.

CALLING SEQUENCE: BRKARY(A(DV),X1,X2,X3,...,XN)

or BKARAD(A(DV),X1,X2,X3,...,XN)

SUBROUTINE NAMES: ST0ARY or ARYSTO

PURPOSE:

These subroutines will place a value into or take a value out of a
specific array location respectively. Their respective operations are:

Ai = X , i = N, N> 0

or X = Ai , i = N , N > 0

RESTRICTIONS:

The value may be anything but N must be an integer.

CALLING SEQUENCE: ST0ARY(N,X,A(DV))

or ARYST(N,X,A(DV))
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DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: STFSEP or SCALE

PURPOSE:

Subroutine STFSEP will place a constant value into a variable number of
locations. Subroutine SCALE will utilize a constant value to multiply a
variable number of arguments, each having a location for the product.
The respective operations are:

Xi = Y , i = 1,2,3,...,N

or Xi = Y*Zi , i = 1,2,3,...,N

RESTRICTIONS:

STFSEP may be used to move any desired value but SCALE can only be used
for floating point numbers.

CALLING SEQUENCE: STFSEP (Y,X1.,X2,X3,...,XN )

or SCALE(Y,Z1,X1,Z2,X2,...,ZN,XN)

SUBROUTINE NAMES: STFSEQ or STFSQS

PURPOSE:

Both subroutines will stuff a constant data value into a specified length
array or group of sequential locations. STFSEQ expects the constant data
value to be in the first array location while STFSQS requires it to be
supplied as an additional argument. The respective operations performed
are:

Ai = Al i = 2,N

or Ai = B , i = 1,N

RESTRICTIONS:

N must be an integer but the constant data value may be integer, floating
point or alpha-numeric.

CALLING SEQUENCE: STFSEQ(A(DV),N)

or STFSQS(B,N,A(DV))
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DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: SLDARY or SLDARD

PURPOSE:

These subroutines are useful for updating fixed length interpolation
arrays during a transient analysis. The array data values are moved back
one or two positions, the first one or two values discarded and the last
one or two values updated respectively. The "sliding array" thus main-
tained can then be used with standard interpolation subroutines to simulate
transport delay phenomina. Their respective operations are:

Ai = Ai +1 i = 2,N

and Ai = X i = N + 1

or Ai = Ai + 2 i = 2,N-1

and Ai = X and Ai + 1 = Y i = N

RESTRICTIONS:

The addressed arrays must have the array integer count N as the first
value. For SLDARD, N must be even.

CALLING SEQUENCE: SLDARY(X,A(IC))

SLDARD(X,Y,A(IC))

SUBROUTINE NAME: STORMA

PURPOSE:

This subroutine is useful for constructing historical data arrays during a
transient analysis. It can take the place of several ST0ARY calls. The
operations are as follows:

Al(N) = X1
A2(N) = X2
A3(N) = X3

RESTRICTIONS:

N must be or reference an integer, the X's may be any value.

CALLING SEQUENCE: STORMA(N,X,Al(DV),X2,A2(DV),X3,A3(DV),...)

A.3-15



REDONOO BEACH. CALIFORNIA

SINGLET/DOUBLET ARRAY GENERATION

SUBROUTINE NAMES: SPLIT or JOIN

PURPOSE:

These subroutines separate a doublet array into two singlet arrays or

combine two singlet arrays into a doublet array respectively. Their

respective operations are:

Bi = A2i-1 , i = 1,N
Ci = A2i i = 1,N

or A2i-1 = Bi i = 1,N
A2i = Ci , i = 1,N

RESTRICTIONS:

The arrays may contain any values but N must be an integer. N is the length

of the B and C arrays and the A array must be of length 2N.

CALLING SEQUENCE: SPLIT(N,A(DV),B(DV),C(DV))

or JOIN(N,B(DV),C(DV),A(DV))

SUBROUTINE NAME: SPREAD

PURPOSE:

This subroutine applies interpolation subroutine D1DlDA to two singlet

arrays to obtain an array of dependent variables versus an array of

independent variables. It is extremely useful for obtaining singlet

arrays of various dependent variables with a corresponding relationship

to one singlet independent variable array. The dependent variable arrays

thus constructed can then be operated on by array manipulation subroutines

in order to form composite or complex functions. Doublet arrays can first

be separated with subroutine SPLIT and later reformed with subroutine JOIN.

RESTRICTIONS:

All data values must be floating point except N which must be the integer

length of the array to be constructed. The arrays fed into DlDIDA for

interpolation must start with the integer count. X is for independent

and Y is for dependent. I is for input and 0 is for output.

CALLING SEQUENCE: SPREAD(N,X(IC) ,Y(IC),XI(PV),YO(DV))
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COMPARISON OPERATION

SUBROUTINE NAMES: MAXDAR or MXDRAL

PURPOSE:

These subroutines will obtain the absolute maximum difference between
corresponding elements of two arrays of equal length N. The array
values must be floating point numbers. The operation performed is

D = Ai - Bi max , i = 1,N

Subroutine MXDRAL also locates the position P between 1 and N where the
maximum occurs.

RESTRICTIONS:

The N argument must be an integer. The D and P arguments are returned as
floating point numbers.

CALLING SEQUENCE: MAXDAR(N,A(DV),B(DV),D)

or MXDRAL(N,A(DV),B(DV),D,P)
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A.4 INTERPOLATION/EXTRAPOLATION SUBROUTINES

Lagrangian Interpolation Page

LAGRAN Uses one doublet array A.4-3
LGRNDA Uses two singlet arrays "

Linear Interpolation - Single Variable

D1DEGl Uses one doublet array A.4-4
D1DlDA Uses two singlet arrays "
D1D1WM Uses DlDEGl and multiplies the interpolation by the "

Z value
D11MDA Uses DIDlDA and multiples the interpolation by the

Z value
D1MDG1 Uses the arithmetic mean of two input values as the

independent variable; uses a doublet array
DIMIDA Same as DlMDG1 except two singlet arrays are used "
DIM1WM Uses DlMDGl and multiplies the interpolation by the A.4-5

Z value
DIMiMD Uses DIMIDA and multiplies the interpolation by the

Z value

D1D1IM an array of Y's
DDlMI "
D11DAI) Identical to DIDGlI, DlDllM and DIDlMI, except for
D11DIM the use of singlet arrays and call on DIDlDA
D11MDI "
DlIMDI These are indexed subroutines which use the arithmetic A.4-6
DlIMWM mean of two input values as the independent "
D1IMIM variable "

Linear Interpolation - Two Single Variables

CVQ1HT Performs two single variable linear interpolations
CVQ1WM "

Linear Interpolations - Variables 1 Calls

VARSCM| Subroutines set up as Variables 1 calls when possessing A.4-7
VARCCM the SIV and DIV mnemonic codes in the nodal data "
VARC1 block
VARC2 "
VARGSM Subroutines set up as Variables 1 calls when processing "
VARGCM the SIV and DIV mnemonic codes in the conductor data "
VARG1 block
VARG2

Parabolic Interpolation - Single Variable

D1DEG2 Uses LAGRAN and a doublet array A.4-8
D1D2DA Uses LGRNDA and two singlet arrays "
D1D2WM Uses LAGRAN and multiplies the interpolation by the

Z value

A.4-1
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D12MDA Uses LGRNDA and multiplies the interpolation by the A.4-8

by the Z value
DlMDG2 Uses the arithmetic mean of two input values as A.4-9

independent variable; uses doublet array
DIM2DA Same as DlMDG2 except two single arrays are used "
DIM2WM Uses D1MDG2 and multiplies the interpolation by the "

Z value

D1M2MD Uses DlM2Da and multiplies the interpolation by the Z "
value

Cyclical Interpolation Arrays

D11CYL Reduces core storage requirements and uses linear A.4-10
DA11CYI interpolation "

D12CYL Identical to D11CYL and DA11CY except that parabolic "

DA12CY interpolation is used "

D11MCY Identical to D12CYL and DA12CY except that the inter- "

DAllMCJ polation is multiplied by the value in address Z "
D12MCY Identical to D11MCY and DAllMC except that parabolic "

DA12MCJ interpolation is used

Point Slope Interpolations

GSLOPE Generates a slope array so that point slope interpola- A.4-11
tion can be used

PSINTR Point slope interpolation "

PSNTWM "

Bivariate Interpolations

Bivariate Array Format A.4-12

BVSPSA Uses an input Y argument to address a bivariate "

BVSPDA I array "

BVTRN1 Constructs a bivariate array of Y's versus X and Z "

BVTRN2 from an input array of Z's versus X and Y "
D2DEG1 Performs bivariate linear interpolation A.4-13
D2DEG2 Performs bivariate parabolic interpolation "

D2DlWM Uses D2DEG1 and multiplies the interpolation by the "

W value

D2D2WM Uses D2DEG2 and multiplies the interpolation by the "
W value

D2MXD1 Identical to D2DEG1 and D2DEG2 except that the arith- "
D2MXD2 metic mean of two X values is used as the X "

independent variable

D2MX1M Identical to D2D1WM and D2D2WM except that the arith-
D2MX2M metic mean of two X values is used as the X

independent variable

Trivariate Interpolations

Trivariate Array Format A.4-14

D3DEG1 Performs trivariate linear interpolation "
D3D1WMJ

Linear Extrapolation

ITRATE Linearly extrapolates a new guess on the basis of A.4-15
Zero error

A.4-2
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LAGRANGIAN INTERPOLATION

SUBROUTINE NAMES: LAGRAN or LGRNDA

PURPOSE:.

These subroutines perform Lagrangian interpolation of 
up to order 50. The

first requires one doublet array of X, Y pairs while 
the second requires

two singlet arrays, one of X's and the other of Y's. 
They contain an

extrapolation feature such that if the X value falls outside the range of

the independent variable the nearest dependent Y variable 
value is

returned and no error is noted.

n n
Y = Pn (X) =  Yk Xk - Xi , n 1,2,3,...,50max.

k=0 i=0
ifk

RESTRICTIONS:

All values must be floating point except N which is the order of interpola-

tion plus one and must be an integer. The independent variable values

must be in ascending order.

CALLING SEQUENCE: LAGRAN(X,Y,A(IC),N)

or LGRNDA(X,Y,AX(IC) ,AY(IC) ,Y)

NOTE:

A doublet array is formed as follows:

IC,Xl,Y1,X2,Y2,X3,Y3,...,XN,YN
where IC = 2*N (set by program)

and singlet arrays are formed as follows:

IC,Xl,X2,X3,...,XN

IC,Yl,Y2,Y3,...,YN
and IC = N (set by program)

89<
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LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: DIDEGI or D1DIDA

PURPOSE:

These subroutines perform single variable linear interpolation on doublet
or singlet arrays respectively. They are self-contained subroutines that
are called upon by virtually all other linear interpolation subroutines.

RESTRICTIONS:

All values must be floating point numbers. The X independent variable
values must be in ascending order.

CALLING SEQUENCE: DlDEGl(X,A,(IC),Y)
or DlDIDA(X,AX(IC),AY(IC),Y)

SUBROUTINE NAMES: D1DlWM or D11MDA

PURPOSE:

These subroutines perform single variable linear interpolation by calling
on DlDEG1 or DlDIDA respectively. However, the interpolated answer is
multiplied by the value addressed as Z prior to being returned as Y.

RESTRICTIONS:

Same as DlDEGI or DIDlDA and Z must be a floating point number.

CALLING SEQUENCE: DlDlWM(X,A(IC),Z,Y)

or D1lMDA(X,AX(IC) ,AY(IC) ,Z,Y)

SUBROUTINE NAMES: D1EDG1 or D1M1DA

PURPOSE:

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. They require a doublet or two
singlet arrays respectively.

RESTRICTIONS:

See DIDEG1 or DlDlDA as they are called on respectively.

CALLING SEQUENCE: D1MDG1(Xl,X2,A(IC),Y)

or DlMIDA(X1,X2,AX(IC),AY(IC),Y)

A.4-4



REDONDO GEACIi. CALI ORNIA

LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: D1MlWM or D1_MlMD

PURPOSE:

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. The interpolated answer is
multiplied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as D1MDGI or DII4IDA and Z must be a floating point number.

CALLING SEQUENCE: DM1WM(Xl,X2,A(IC) ,Z,Y) or DIMIMD(XI,X2,AX(IC) ,AY(IC),Z,Y)

SUBROUTINE NAMES: D1DGlI or DIDIIM or D1DlMI

PURPOSE:

These subroutines perform single variable linear interpolation on an array
of X's to obtain an array of Y's. DID1IM multiplies all interpolated
values by a constant Z value while DIDlMI allows a unique Z value for each
X value. They all call on DIDEGl.

RESTRICTIONS:

The number of input X's must be supplied as the integer N and agree with
the number of Y and Z locations where applicable. Z values must be
floating point numbers.

CALLING SEQUENCE: DIDGlI(N,X(DV),A(IC) ,Y(DV))

or DlDlIM(N,X(DV),A(IC),Z,Y(DV))

or DD1MI (N,X(DV) ,A(IC) ,Z(DV) ,Y(DV))

SUBROUTINE NAMES: D11DAI or DIIDIM or D11MDI

PURPOSE:

These subroutines are virtually identical to DIDGlI, DIDlIM and DlDIMI
respectively. The difference is that they require singlet arrays for
interpolation and call on DIDIDA.

RESTRICTIONS:

Same as DlDG1I, DIDlIM and DID1MI.

CALLING SEQUENCE: D11DAI(N, X (DV) ,AX(IC),AY(IC),Y (DV))

or D11DIM(N,X(DV),AX(IC),AY(IC),Z,Y(DV))

or DllMDI(N,X(DV),AX(IC),AY(IC),Z(DV),Y(DV))

A.4-5
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LINEAR INTERPOLATION - SINGLE VARIABLE/TWO SINGLE VARIABLES

SUBROUTINE NAMES: DIlMDl or DlIMWM or DlIMIM

PURPOSE:

These are indexed subroutines which use the arithmetic mean of two input

values.as the independent variable for linear interpolation. The string of

answers (Y) produced are left as is (DlIMD1), are all multiplied by a

single factor (DlIMWM), or each answer is multiplied by a separate factor.

BESTRICTIONS:

SThe interpolation array addressed must have an even number of input values

and the independent variables must be in ascending order. These routines

call upon DIDlWM. N is the number of times the operation is to be performed.

CALLING SEQUENCE:

DIIMD1(N,X1(DV),X2(DV),A,Y(DV))

or DlIMWM(N,X1(DV),X2(DV),A,Z,Y(DV))

or DlIMIM(N,X1(DV),X2(DV),A,Z(DV),Y(DV)

-INEAR INTERPOLATION - TWO SINGLE VARIABLES

SUBROUTINE NAMES: CVQ1HT or CVQ1WM

PURPOSE:

These subroutines perform two single variable linear interpolations. 
The

interpolation arrays must have the same independent variable X 
and dependent

variables of, let's say, R(X) and S(X). Additional arguments of Y, Z and T

complete the data values. The post interpolation calculations are respec-

tively:

Y = S(X)*(R(X)-T)

or Y = Z*S(X)(R(X)-T)

RESTRICTIONS:

Interpolation arrays must be of the doublet type and have a common independ-

ent variable. All values must be floating point numbers.

CALLING SEQUENCE:

CVQIHT(X,AR(IC),AS(IC),T,Y)

or CVQ1WM(X,AR(IC),AS(IC),T,Z,Y)

A.4-6
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SUBROUTINE NAMES: VARCSM or VARCCM or VARCl or VARC2

PURPOSE: These are linear interpolation subroutines carried over from

CINDA-3G. Mnemonic options utilized in the Node Data block caused inser-

tion of these calls into the Variables 1 block. This does not apply for

the SINDA program but the routines remain as they could be called directly

by a user. The routines are similar in that the C argument is a function

of the T argument which is the independent variable for interpolation from

the doublet array A argument, answer to which is multiplied by the factor F

argument. Where two A's and F's are referenced in the same call, separate

interpolations and multiplications are performed and the answers summed.

RESTRICTIONS: VARC1 and VARC2 reference only one A argument for interpola-

tion, the other A-F position arguments are multiplied together to form

their contribution to the answer.

CALLING SEQUENCE: VARCSM (T, C, A(IC), F)

VARCCM (T, C, AI(IC), Fl, A2(IC), F2)
VARC1 (T, C, 1.34, Fl, A2(IC), F2)
VARC2 (T, C, Al(IC), Fl, 2.87, F2)

SUBROUTINE NAMES: VARGSM or VARGCM or VARG1 or VARG2

PURPOSE: As above, these routines are carried over from the CINDA-3G

program except that they pertained to the conductor block. The mean

temperature of the two T arguments is used as the independent variable

for interpolation when VARGSM is called except if the F argument is

negative, in which case the Tl argument is used. The other three routines

use the Tl for Al and/or T2 for A2 to obtain two partial values (as

described above) which are then combined as one over the sum of the

inverses:

G = 1.0/(1.0/Gl + 1.O/G2)

RESTRICTIONS: The A arguments must reference the integer count of

of doublet interpolation arrays.

CALLING SEQUENCE:

VARGSM (G, T1l, T2, A(IC), F)

VARGCM (G, Tl, T2, Al(IC), Fl, A2(IC), F2)

VARG1 (G, Tl, T2, 4.78, Fl, A2(IC), F2)

VARG2 (G, Tl, T2, Al(IC), Fl, 7.93, F2)

93
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PARABOLIC INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: DlDEG2 or DID2DA

PURPOSE:

These subroutines perform single variable parabolic interpolation. The

first requires a double array of X, Y pairs while the second requires

singlet arrays of X and Y. values. They call on subroutines LAGRAN and

LGRNDA respectively.

RESTRICTIONS:

See LAGRAN or LGRNDA respectively.

CALLING SEQUENCE: D1DEG2 (X,A(IC) ,Y)

or D1D2DA(X,AX(IC) ,AY(IC) ,Y)

SUBROUTINE NAMES: D1D2WM or D12MDA

PURPOSE:

These subroutines perform single variable parabolic interpolation by

calling on LAGRAN or LGRNDA respectively. However, the interpolated

answer is multiplied by the value addressed as Z prior to being returned

as Y.

RESTRICTIONS:

Same as LAGRAN or LGRNDA and Z must be a floating point number.

CALLING SEQUENCE: DlD2WM(X,A(IC),Z,Y)

or DL2MDA(X,AX(IC),AY(IC),Z,Y)

94<

A.4-8



RECOPD00 BEAC-H.CAIFOQ"A

PARABOLIC INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: DlMDG2 or DlM2DA

PURPOSE:

These subroutines use the arithmetic mean of two input values as the
independent variable for parabolic interpolation. They require a doublet
or two singlet arrays respectively.

RESTRICTIONS:

See LAGRAN or LGRNDA as they are called on respectively.

CALLING SEQUENCE: D1MDG2(X1,X2,A(IC) ,Y)

or DlM2DA(X, X2,AX(IC),AY(IC),Y)

SUBROUTINE NAMES: D1M2WM or D1M2MD

PURPOSE:

These subroutines use the arithmetic mean of two input values as the
independent variable for parabolic interpolation. The interpolated answer
is multiplied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as DlMDG2 or DM2DA and Z must be a floating point number.

CALLING SEQUENCE: DlM2WM(X1,X2,A(IC),Z,Y)

or DlM2MD(X1,X2,AX(IC),AY(IC),Z,Y)

95<
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SUBROUTINE NAMES: D11CYL or DA11CY

PURPOSE: These subroutines reduce core storage requirements for cyclical
interpolation arrays. The arrays need cover one period only, and the
period (PR) must be specified as the first argument. Linear interpolation
is performed, and the independent variable must be in ascending order.

RESTRICTIONS: All values must be floating point. Subroutine INTRFC is
called on by both D11CYL and DAliCY, then DlDEGl or DIDlDA respectively.

CALLING SEQUENCE: D11CYL(PR,X,A(IC),Y)

or DAllCY(PR,X,AX(IC),AY(IC),Y)

SUBROUTINE NAMES: D12CYL or DA12CY

PURPOSE: These subroutines are virtually identical to D11CYL and DA11CY
except that parabolic interpolation is performed.

RESTRICTIONS: See D11CYL and DAIlCY. Subroutines LAGRAN and LGRNDA
respectively are called on.

CALLING SEQUENCE: D12CYL(PR,X,A(IC),Y)

or DA12CY(PR,X,AX(IC),AY(IC),Y)

SUBROUTINE NAMES: D11MCY or DA11MC

PURPOSE: These subroutines are virtually identical to D11CYL and DA11CY
except that the interpolation is multiplied by the floating point Z value
prior to being returned as Y.

RESTRICTIONS: Call on subroutines DlDEGl and DIDlDA respectively.

CALLING SEQUENCE: D11MCY(PR,X,A(IC),Z,Y)

or DA11MC(PR,X,AX(IC),AY(IC),Z,Y)

SUBROUTINE NAMES: D12MCY or DA12MC

PURPOSE: These subroutines are virtually identical to D11MCY and DA11MC
except that parabolic interpolation is performed.

RESTRICTIONS: Calls on subroutines LAGRAN and LGRNDA respectively.

CALLING SEQUENCE: D12MCY(PR,X,A(IC),Z,Y)

or DAl2MC(PR,X,AX(IC),AY(IC),Z,Y)

q6
A.4-10



• EC)ONDO BEACH. CALFORNIA

POINT SLOPE INTERPOLATION

SUBROUTINE NAMES: GSL-OPE

PURPOSE:-

This subroutine will generate a slope array so that-point slope interpola-

tion subroutines can be used instead of standard linear interpolation 
sub-

routines. The user must address two singlet type arrays and a singlet slope

array will be produced.

RESTRICTIONS:

The X independent variable array must be in ascending order. All arrays

must be of equal length and contain floating point numbers.

CALLING SEQUENCE:

GSLOPE(AX(IC),AY(IC),AS(IC))

SUBROUTINE NAMES: PSINTR or PSNTWM

PURPOSE:

These subroutines perform linear interpolation and require arrays of the Y

points and slopes which correspond to the independent varipble X array.

All values must be floating point numbers. PSNTWM multiplies the

interpolated answer by Z prior to returning it as Y.

RESTRICTIONS:

The independent X and dependent Y and slope arrays must be of equal length.

CALLING SEQUENCE:

PSINTR(X,AX(IC),AY(IC),AS(IC),Y)

or. PSNTWM(X,AX(IC),AY(IC),AS(IC),Z,Y)

A.497
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BIVARIATE ARRAY FORMAT Z = f(X,Y)

Bivariate arrays must be rectangular, full and input in the following row
order:

IC,N ,X 1,X 2,X 3, . . . , X N
Y1,Zll,Z12,Zl3, . . . , ZlN
Y2,Z21,Z22,Z23, . . . , Z2N

YM,ZMl,ZM2,ZM3, . . . , ZMN

where N is the integer number of X variables. All other values must be
floating point numbers, and the X and Y values must be in ascending order.

SUBROUTINE NAMES: BVSPSA or BVSPDA

PURPOSE: These subroutines use an input Y argument to address a bivariate
array and pull off a singlet array of Z's corresponding to the X's or pull
off a doublet array of X, Z values, respectively. The integer count for
the constructed arrays must be exactly N or 2*N respectively. To use the
singlet array for an interpolation call the X array can be reached by
addressing the N in the bivariate array.

RESTRICTIONS: As stated above, and all values must be floating point.

CALLING SEQUENCE: BVSPSA(Y,BA(IC),AZ(IC))

or BVSPDA(Y,BA(IC),AXZ(IC))

SUBROUTINE NAMES: BVTRN1 or BVTRN2

PURPOSE: These subroutines construct a bivariate array of Y's versus
X and Z from an input bivariate array of Z's versus X and Y. BVTRN1
should be used when the Z values increase with increasing Y values and
BVTRN2 when the Z values decrease with increasing Y values.

RESTRICTIONS: The user must appropriately place the X and Z values and
spaces for Y's in the array to be constructed. These subroutines will
fill the Y spaces. The new array can differ in size from the old. Sub-
routine DlDEG1 is called and its linear extrapolation feature applies.

CALLING SEQUENCE: BVTRN1(BAO(IC),BAN(IC))

or BVTRN2(BAO(IC),BAN(IC))

98<
A.4-12



BIVARIATE INTERPOLATION . SYTsEA$eSNA-'CNOO RBEACH. CAtL.FOANI A

SUBROUTINE NAMES: D2DEGl or D2DEG2

PURPOSE: These subroutines perform bivariate linear and parabolic
interpolation respectively. The arrays msut be formated as shown for
Bivariate Array Format.

RESTRICTIONS: For D2DEG1 , N>2,M>2 See Bivariate
for D2DEG2 , N>3,ML3 Array Format

CALLING SEQUENCE: D2DEGl(X,Y,BA(IC),Z)

or D2DEG2(X,Y,BA(IC),Z)

SUBROUTINE NAMES: D2D1WM or D2D2WM

PURPOSE: These subroutines perform bivariate linear or parabolic
interpolation by calling on D2DEG1 or D2DEG2 respectively. The interpolated
answer is multiplied by the W value prior to being returned as Z.

RESTRICTIONS: Same as D2DEG1 or D2DEG2 and W must be a floating point
value.

CALLING SEQUENCE:
D2D1WM(C,Y,BA(IC),w,Z)

or D2D2WM(X,Y,BA(IC),W,Z)

SUBROUTINE NAMES: D2MXD1 or D2MXD2

PURPOSE: These subroutines are virtually identical to D2DEGl and D2DEG2
except that the arithmetic mean of two X values is used as the X
independent variable for interpolation.

RESTRICTIONS: Same as D2DEG1 or D2DEG2.

CALLING SEQUENCE: D2MXD1(X1,X2,Y,BA(IC),Z)

or D2MXD2(XI,X2,Y,BA(IC),Z)

SUBROUTINE NAMES: D2MX1M or D2MX2M

PURPOSE: These subroutines are virtually identical to D2DlWM and D2D2WM
except that the arithmetic mean of two X values is used as the X
independent variable for interpolation.

RESTRICTIONS: Same as D2DiWM and D2D2WM.

CALLING SEQUENCE: D2MXlM(Xl,X2,Y,BA(IC),W,Z)

or D2MX2M(Xl,X2,Y,BA(IC),W,Z)

99<
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TRIVARIATE INTERPOLATION

'RIVARIATE ARRAY FORMAT T = f(X,Y,Z)

Trivariate arrays may be thought of as two or more bivariate arrays, each
bivariate array a function of a third independent variable Z. Trivariate
arrays must be input in row order and be constructed as follows:

IC,NX1,NY1,Zl,X 1,X 2,X 3, . . . , X N
Yl,Tll,T12,T13, . . . , T1N
Y2,T21,T22,T23, . . . , T2N

YM,TM1,TM2,TM3, . . . , TMN
X2,N2,2, X l,X 2,X 3, . . . , X J

YI,T11,T12,T13, . . . , TlJ
12,T21,T22,T23, . . . , T2J

YK, TK1, TK2, TK3, . . . , TKJ
Z3,Ny-Y3Z3, . . . . . . . .

The trivariatemrray may consist of as many bivariate "sheets" as desired.
The number of-X ~1NY values in each sheet must be specified as integers
(NX-NY). The "sheets"-must be rectangular and full but need not be
Ldentiral in .size.

3EBROUTINE NAMES: D3DEG1 or D3D1WM

PURPOSE:

These subroutines perform trivariate linear interpolation. The interpola-
tion array must be constructed as shown for Trivariate Array Format.
Subroutine D2DEG1 is called on which calls on DlDEGl. Hence, the linear
extrapolation feature of these routines applies. Subroutine D3DlWM
multiplies the interpolated answer by F prior to returning it as T.

RESTRICTIONS:

See Tri-varitp-Array TYrmat. F must be a floating point value.

1&IING. SEQUEN~E: D3DEG1(X,Y,Z,TA(IC),T)

or D3D1WM(X,Y,Z,TA(IC),F,T)

/00
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LINEAR EXTRAPOTATION

SUBROUTINE NAME: ITRATE

PURPOSE:

Given two old guesses and their corresponding errors, this 
routine linearly'

extrapolates a new guess on the basis of zero error.

E.

0 G

E G' G, Go

The new guess and error are positioned in the 
old locations and the extra-

polated new guess is returned in the 
new guess location.

RESTRICTIONS:

If the error function being plotted has changes 
of slope, the user must

insure that his guesses are quite accurate or 
divergence will be assured.

CALLING SEQUENCE:
ITRATE(E, G, EN,GN)

101<
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A.5 MATHEMATICAL SOLUTION SUBROUTINES

Area Integration

SMPINTk Performs area integration by Simpson's rule and A.5-3
TRPZD trapezoidal rule using equal increments "

TRPZDA Performs area integration by the trapezoidal rule "
with non uniform increments

Functional Evaluation

CINSINt Obtains the sine function of an angle A.5-4
SINARY "

CINCOS\ Obtains the cosine function of an angle or array of
COSARY angles

CINTAN Obtains the tangent functions of an angle or array "
TANARY of angles "

ARCSIN Obtains the angle corresponding to a sine function A.5-5
ASNARYJ value or array of sine values "

ARCCOS Obtains the angle corresponding to a cosine function "
ACSARYf value or array of cosine values "

ARCTAN Obtains the angle corresponding to a tangent function "
ATNARY) value of array of tangent values "

EXPNTL Performs exponential operations A.5-6
ARYEXP
EXPARY

LOGT Obtains the base 10 log function of a number or array "
L0GTAR of numbers "

LOGE Obtains the base e log function of a number or array
LOGEAR of numbers

Roots

SQR00T Obtains the square root of a number or array of A.5-7
SQROTI numbers "

CMPXSR Obtains the complex square root of a complex number "
CSQRI or array of complex numbers "

NEWTRT Utilizes Newton's method to obtain one root of a A.5-8
NEWRT4 cubic or quartic equation "

Polynomial/Simultaneous Linear Equations

PLYNML Calculates the value of the dependent variable for A.5-9
PLYARY an Nth order polynomial "
PLYAWM "

SIMEQN Solves a set of linear equations (10 or less) by the "
factorized inverse method

10<5
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Curve Fit/Temperature Derivative

LSTSQU Performs a least squares curve fit to an arbitrary A.5-10

number of X,Y pairs to yield a polynomial

equation of up to order 10

TDOT Calculates the time point temperature derivatives

for diffusion nodes

/03
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AREA INTEGRATION

SUBROUTINE NAMES: SMPINT or TRPZD

PURPOSE:

These subroutines perform area integratins by Simpson's rule and 
the

trapezoidal rule respectively. Simpson's rule requires that an odd

number of points be supplied. If an even number of points is supplied,

SMPINT will apply the trapezoidal rule to the last incremental 
area but

Simpson's rule elsewhere. The respective operations are:

A = DX* (Yl+4Y2+2Y3+4Y4+. ..+YN)/3

or A = DX*(Yl+2Y2+2Y3+2Y4+...+YN)/2

RESTRICTIONS:

The DX increment must be uniform between all the Y points. All values

must be floating point except N which must be an integer.

CALLING SEQUENCE: SMPINT(N,DX,Y(DV),A)

or TRPZD(N, DX,Y (DV) ,A)

SUBROUTINE NAME: TRPZDA

PURPOSE:

This subroutine performs area integration by the trapezoidal rule. 
It.

should be used where the DX increment is not uniform between the Y

values but the corresponding X value for each Y value is known. The

operation performed is as follows:

A = (Xi-Xi-1)*(Yi+Yi - 1) i 2,N
2

RESTRICTIONS:

All values must be floating point numbers except the array length N

which must be an integer.

CALLING SEQUENCE: TRPZDA(N,X(DV) ,Y(DV) ,A)

104<
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SUBROUTINE NAMES: CINSIN or SINARY

PURPOSE:

These subroutines obtain the sine function of an angle or array of angles.
Their respective operations are:

A = sine (B)
or Ai = sine (Bi) i = 1,N

RESTRICTIONS:

All angles must be in radians. All values must be floating point numbers
except N which must be an integer.

CALLING SEQUENCE: CINSIN(B,A)

or SINARY(N,B(DV),A(DV))

SUBROUTINE NAMES: CINCOS or COSARY

PURPOSE:

These subroutines obtain the cosine function of an angle or array of angles.
Their respective operations are:

A = cosine (B)
or Ai = cosine (Bi) , i = 1,N

RESTRICTIONS:

All angles must be in radians. All values must be floating point numbers
except the array length N which must be an integer.

CALLING SEQUENCE: CINCS (B,A)

or COSARY(N,B(DV),A(DV))

SUBROUTINE NAMES: CINTAN or TANARY

PURPOSE:

These subroutines obtain the tangent function of an angle or array of
angles. Their respective operations are:

A = tangent (B)
or Ai = tangent (Bi) i = 1,N

RESTRICTIONS:

All angles must be in radians. All values must be floating point numbers
except the array length N which must be an integer.

CALLING SEQUENCE: CINTAN(B,A)

or TANARY(N,B(DV),A(DV))

A.5-4
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FUNCTIONAL EVALUATION

SUBROUTINE NAMES: ARCSIN or ASNARY

PURPOSE:

These subroutines obtain the angle corresponding to a sine function value
or array of sine values. Their respective operations are:

A = sine -1(B)
or Ai= sine -1(Bi) , i = 1,N

RESTRICTIONS:

The angles are returned in radianswith the following limits, -. r/2<A</2.
All values must be floating point except for the array length N which
must be an integer.

CALLING SEQUENCE: ARCSIN(B,A) or ASNARY(N,B(DV) ,A(DV))

SUBROUTINE NAMES: ARCCOS or ACSARY

PURPOSE:

These subroutines obtain the angle corresponding to a cosjne function value
or array of cosine values. Their respective operations are:

A = cosine- (B)
or Ai = cosine-1 (Bi) , i = 1,N

RESTRICTIONS:

The angles are returned in radians with the following limits, 0 < A < i.
All values must be floating point numbers except for the array length
N which must be an integer.

CALLING SEQUENCE: ARCCOS (B,A) or ACSARY(N,B(DV) ,A(DV))

SUBROUTINE NAMES: ARCTAN or ATNARY

PURPOSE:

These subroutines obtain the angle corresponding to a tangent function
value of array of tangent values. Their respective operations are:

A = tangent - 1 (B)
or Ai = tangent-1(Bi) , i.= 1,N

RESTRICTIONS:

The angles are returned in radians with the following limits, -n/2<A<W/2
All values must be floating point numbers except the array length N
which must be an integer.

CALLING SEQUENCE: ARCTAN(B,A) or ATNARY(N,B(DV),A(DV))

A.5-5
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SUBROUTINE NAMES: EXPNTL or ARYEXP or EXPARY

PURPOSE:

These subroutines perform an exponential operation. Their respective
operations are:

A = BC
or Ai = Bi i = 1,N
or Ai = Bii i =  ,N

RESTRICTIONS:

All values must be positive floating point numbers except N which must be
an integer.

CALLING SEQUENCE: EXPNTL(C,B,A)

or ARYEXP(N,C,B(DV) ,A(DV))

or EXPARY(N,C(DV),B(DV),A(DV))

SUBROUTINE NAMES: LOGT or LOGTAR

PURPOSE:

These subroutines obtain the base 10 log function of a number or array of
numbers. Their respective operations are:

A = logl0(B)
or Ai = log 10 (Bi) i = 1,N

RESTRICTIONS:

All values must be positive floating point numbers except N which must be
an integer.

CALLING SEQUENCE: LOGT(B,A)

or LOGTAR(N,B(DV),A(DV))

SUBROUTINE NAMES: LOGE or LOGEAR

PURPOSE:

These subroutines obtain the base e log function of a number or array of
numbers. Their respective operations are:

A = log (B)
or Ai = log (Bi) , i = 1,N

RESTRICTIONS:

All values must be positive floating point numbers except N which must be
an integer.

CALLING SEQUENCE: LOGE(B,A)

or LOGEAR(N,B(DV),A(DV))

A.5-6
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ROOTS

SUBROUTINE NAMES: SQRL0T or SQROTI

PURPOSE:

These subroutines obtain the square root of a number or array of numbers

respectively. Their respective operations are:

A =+,

or, Ai, + F i" I,N

RESTRICTIONS:

The A and B values must be floating point numbers. The N must be an integer.

CALLING SEQUENCE: SQROOT(B,A)

or SQROTI(N,B(DV),A(DV))

SUBROUTINE NAMES: CMPXSR or CSQRI

PURPOSE:

These subroutines obtain the complex square root of a complex number or an

array of complex numbers respectively. Their respective operations are:

A + iB..= .C + iD , i =

or Aj + iBj = E Cj + iDj, j = 1,N

RESTRICTIONS:

All numbers must be floating point except N which must be an integer.

CALLING SEQUENCE: CMPXSR(C,D,A,B)

- or CSQRI(N,C(DV),D(DV),A(DV),B(DV))

1C8<
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ROOTS

SUBROUTINE NAMES: NEWTRT or NEWRT4

PURPOSE:

These subroutines utilize Newton's method to obtain one root of a cubic,
or quartic equation respectively. The root must be in the neighborhood
of the supplied initial guess and up to 100 iterations are performed in

order to obtain an answer within the specified tolerance. If the tolerance
is not met, an answer of 1038 is returned. The respective equations are:

f(X) = Al+A2*X+A3*X2+A4*X 3 = 0.O+T

or g(X) = AI+A2*X+A2*X2+A4*X 3+A5*X 4 = O.O+T

where X starts as the initial guess RI and finishes as the final answer
RF. T is the tolerance.

RESTRICTIONS:

All data values must be floating point numbers.

CALLING SEQUENCE: NEWTRT(A(DV),T,RI,RF)

or NEWRT4 (A(DV), T,RI, RF)

1C 9<
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POLYNOMIAL/SIMULTANEOUS LINEAR EQUATIONS

SUBROUTINE NAMES: PLYNML or PLYARY or PLYAWM

PURPOSE:

These subroutines calculate Y from the following polynomial equation:

Y = Al+A2*X+A3*X2+A4*X 3+ ... +AN+1*X N

Z = Y*W

The number of terms is variable but all the A coefficients must be input no
matter what their value.

RESTRICTIONS:

All values must be floating point numbers except for the degree of polynomial
N which must be integer.

CALLING SEQUENCE: PLYNML(X,Al,A2,A3,... ,AN,Y)

or PLYARY(N,X,A(DV),Y)

or PLYAWM(N,X,A(DV),W,Z)

SUBROUTINE NAME: SIMEQN

PURPOSE:

This subroutine solves a set of up to 10 linear simultaneous equations by
the factorized inverse method. The problem size and all input and output
values are communicated as a single specially formatted positive input
array. The array argument must address the matrix order (N) which is input
by the user. The first data value must be the integer order of the set (or
size of the square matrix) followed by the coefficient matrix [A] in column
order, the boundary vector IBI and space for the solution of vector iS .

[A] IS = B}

RESTRICTIONS:

The integer count and matrix size must be integers, all other.values must
be floating point. The coefficient matrix is not modified by SIMEQN.
Hence, changes to IBI only allow additional solutions to be easily
obtained.

CALLING SEQUENCE: SIMEQN(A(N))

where the array is formatted exactly as follows:

IC,N,A(1,1),A(1,2),...A(N,N),Bl,...,BN,Sl,...,SN

110<
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CURVE FIT/TEMPERATURE DERIVATIVE

SUBROUTINE NAME: LSTSQU

PURPOSE:

This subroutine performs a least squares curve to fit to an arbitrary

number of X, Y pairs to yield a polynomial equation of up to order 10.
Rather than using a double precision matrix inverse, this subroutine calls

on the subroutine SIMEQN to obtain a simultaneous solution.

MRESTRICTIONS:

All values must be floating point numbers except N and M which must be
integers. N is the order of the polynominal desired and is one less

than the number of coefficients desired. M is the array length of the

independent X ar dependent Y values.

CALLING SEQUENCE: LSTSQU(N, M,X(DV),Y(DV),A(DV))

*This subrautin.-2equires 2*M dynamic storage core locations.

TSBROUTINE iNABM TDOT

PURPOSE:

This subroutine allows the user to calculate the time point temperature

derivatives for diffusion nodes. The single argument must address an

array with as many locations as there are diffusion nodes; the answers
are returned in relative order. The routine utilizes the pseudo-compute
sequence to calculate the time point net q into the nodes and then divides
by the nodal capacitances. Consequently, the user may multiply the

temperature derivatives by the nodal capacitance to obtain the nodal net q.

RESTRICTIONS:

Do not call this subroutine from Variables 1. The long pseudo-compute
sequence is required.

CALLING SEQUENCE: TDOT(A(DV))

A.5-10
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Input Format 
AOONOO .EA. CAL ORNIA

Unless otherwise noted, the matrices require input as positive num-

bered arrays with integer number of rows and columns as the first 
two

data values followed by floating point element values in row 
order.

Special Matrix Generation PaM

ZERO Generates a matrix such that every element is 
zero A. 6-4

ONES Generates a matrix such that every element is one

UNITY Generates a square matrix such that the principal

diagonal elements are unity and the remaining

elements are zero

SIGMA Generates a square matrix such that all elements on

and below the principal diagonal are unity and the

remaining elements are zero

GENALP Generates a matrix such that every element is equal

to a constant

GENCOL Generates a column matrix such that the first element

is equal to X1 and the last element is equal to X2

FULSYM Forms a half symmetric matrix from a full square A.6-5

matrix

SYMFUL Forms a full square matrix from a half symmetric

matrix

SYMFRC Forces symmetry upon a square matrix

DIAG Forms a full square matrix given a column or row

matrix

UNDIAG Forms a row matrix from the diagonal elements of a

square matrix

DIAGAD Adds the elements of a row matrix to the diagonal

elements of a square matrix

Elemental Operations

ELEADD Adds corresponding elements of two matrices [A] & [B] A.6-6

to form a third [Z] (Matrix addition)

ELESUB Subtracts the corresponding elements of two matrices "

to form a third [Z] (Matrix subtraction)

ELEMUL Multiplies the corresponding elements of two

matrices [A] & [B] to form a third [Z]. (This is

NOT matrix multiplication)

ELEDIV Divides the corresponding elements of two [A] & [B]

matrices to form a third [Z]. (This is NOT matrix

division)

ELEINV Obtains the reciprocal of each element of matrix [A]

and place it in the corresponding location of

another matrix [Z]

EFSIN Generates the sine of each element of matrix [A] and A.6-7

places it in the corresponding location of another

matrix [Z]

A. 6-1
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EFASN Generates the arcsine of each element of matrix (A] A.6-7

and places it in the corresponding location of
another matrix [Z]

EFCOS Generates the cosine of each element of matrix [A] and "
places it in the corresponding location of another

matrix [Z]

EFACS Generates the arcosine -f each element of matrix [A] ' "
and places it in the corresponding location of
another matrix [Z]

EFTAN Generates the tangent of each element of matrix [A]
and places it in the corresponding location of
another matrix [Z]

EFATN Generates the arctangent of each element of matrix [A]
and places it in the corresponding location of
another matrix [Z]

EFABS Generates the absolute value of each matrix [A] A. 6-8

element

EFLOG Generates the natural log of each matrix [A] element "

EFSQR Generates the square root of each matrix [A] element "

EFEXP Generates the exponential of each matrix [A element "

EFPOW Generates the power of each matrix [A] element "

ADDALP Adds a constant to every element in a matrix A.6-9

ALPHAA Multiplies every element in a matrix by a constant "

MATRIX Allows a constant to replace a specific matrix element "

SCALAR Allows a specific matrix element to be placed into a
constant location

MATADD Adds a constant to a specific matrix element

Matrix Operations/Solutions

INVRSE Inverts a square matrix A.6-10

MULT Multiplies two conformable matrices "

TRANS Forms the transpose [Z] from matrix [A] "

AABB Sums two scaled matrices A.6-11

BTAB Performs the matrix operation [B] t [A][B] "

BABT Performs the matrix operation [B] [A][B]t

DISAS Allows a user to operate on matrices in a partitioned A.6-12
manner by disassembling a submatrix [Z[ from a
parent matrix [A]

ASSMBL Allows a user to operate on matrices in a partitioned
manner by assembling a submatrix [Z] into a parent
matrix [A]

A.6-2 11j3<
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C0LMLT( Multiplies each element in a column or row of matrix A. 6-12
ROWMLTJ [A] by its corresponding element from the diagonal

matrix [V] which is stored as a vector

SHIFT Moves an entire matirx as is from one location to A.6-13

another

REFLCT Moves an entire matrix with the order of the column
elements reversed from one location to another

SHUFL Allows the user to reorder the size of a matrix of a
matrix as long as the total number of elements
remains unchanged

COLMAX Searches an input matrix to obtain the maximum or
COLMIN 5 minimum values within each column

SYMREMt Allows the SINDA user to operate on a simple row/column A.6-14
SYMREP) of a half symmetric matrix

SYMDAD Adds the elements of a vector array to the corresponding "
elements of the main diagonal of a half symmetric
matrix

SYMIV Obtains the inverse of a half symmetric matrix

POLMLT Multiplies a given number of nth order polynomial A.6-15
coefficients by a similar number of mth order
polynomial coefficients

POLVAL Evaluates the polynomial for the input complex number "
X + iY, given a set of polynomial coefficients

PLYEVL Evaluates each polynomial for each X value, given a i
matrix with nth order polynomial coefficients and
a column matrix of X values

POLSOV Calculates the complex roots, given a set of polynomial "
coefficients as the first row in a matrix

JACOBI Determines the eigenvalues and eigenvector associated A.6-16
with an input matrix [A]

Store and Recall

CALL Retrieves matrices on magnetic tape A.6-17

FILE Stores matrices on magnetic tape "

ENDMOP Used in conjunction with subroutines CALL and FILE. "

Causes all matrices from the logical 12 tape to be
updated onto the logical 13 tape

LSTAPE Will output the name, problem number and size of every "
matrix stored on tape on logical 13

Applications

MODES Solves a particular matrix dynamic vibration equation A.6-18

MASS Generates an inertia matrix of a dynamic vibration A.6-19

system described in terms of deflections and rotations

STIFF Generates a stiffness matrix for a dynamic vibration A.6-20
system described in terms of deflections and rotations

A.6-3 11.4<
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SUBROUTINE NAMES: ZERO or ONES

PURPOSE: These subroutines generate a matrix [Z] such that every element

is zero or one respectively.

RESTRICTIONS: The matrix to be generated must contain exactly enough
space in addition to having the integer number of rows and columns as the

first two data values. The NR and NC arguments are the integer number of
rows and columns respectively.

CALLING SEQUENCE: ZERO(NR,NC,Z(IC))

or ONES(NR,NC,Z(IC))

SUBROUTINE NAMES: UNITY or SIGMA

PURPOSE: These are square matrix generation subroutines. UNITY generates

a square matrix such that the main diagonal elements are one and all other
elements are zero. SIGMA generates a square matrix such that all elements
on and below the main diagonal are one and the remaining elements are zero.

RESTRICTIONS: The matrix [Z] to be generated must contain exactly enough

space in addition to having the integer number of rows and columns as the

first two data values. The integer number of rows and columns are equal and

must be input as the argument N.

CALLING SEQUENCE: UNITY(N,Z(IC))

or SIGMA(N,Z(IC))

SUBROUTINE NAMES: GENALP or GENCOL

PURPOSE: These are special matrix generation subroutines. GENALP will

generate a matrix such that every element is equal to a constant C. GENCOL
will generate a column matrix such that the first element is equal to X1 and

the last element is equal to X2. The intermediate elements receive equally
incremented values such that a linear relationship is established between
row number and element value.

RESTRICTIONS: The NR and NC arguments refer to the integer number of rows
and columns respectively. X1, X2 and C must be floating point values. The

generated matrices must contain exactly enough space in addition to having
the integer number of rows and columns as the first two data values.

CALLING SEQUENCE: GENALP(NR,NC,C,Z(IC))

or GENCOL(X1,X2,NR,Z(IC))
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SUBROUTINE NAMES: FULSYM or SYMFUL

These subroutines allow the SINDA user to form a half symmetric matrix from a

full square matrix or form a full square matrix from a half symmetric matrix,

respectively. The arguments must address the matrix array integer count set

by the preprocessor, the array lengths must be exact.

RESTRICTIONS:

The half symmetric matrix must be formatted as shown on page A.8-8 and the

full square matrix must be formatted as described on page A.6-1 of this

document.

CALLING SEQUENCE: FULSYM(FM(IC) ,SM(IC))

or SYMFUL(SM(IC) ,FM(IC))

Where FM is the full matrix and SM is the symmetric matrix.

SUBROUTINE NAME: SYMFRC

PURPOSE:

This subroutine may be used to force symmetry upon a square matrix. The

main diagonal elements are untouched and all others are treated as follows:

x = (aij + aji)/2.0; aij = x; aji = x

RESTRICTIONS:

The addressed matrix must be square and formatted as described on page

CALLING SEQUENCE: SYMFRC(A(IC))

SUBROUTINE NAMES: DIAG or UNDIAG or DIAGAD

PURPOSE:

Given a i*N or N*l matrix [V], subroutine DIAG forms a full square N*N

matrix [Z]. The [V] values are placed sequentially on the main diagonal

of [Z] and all off diagonal elements are set to zero. Subroutine UNDIAG

forms a l*N matrix [V] from the diagonal elements of an N*N matrix [Z].

Subroutine DIAGAD adds the elements of a l*N matrix [V] to the diagonal

elements of an N*N matrix [Z].

RESTRICTIONS:

Both matrices must have exactly enough space and contain their integer

number of rows and columns as the first two data values.

CALLING SEQUENCE: DIAG(V(IC),Z(IC))

or UNDIAG(Z(IC),V(IC))

or DIAGAD(V(IC),Z(IC))

A.6-5
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SUBROUTINE NAMES: ELEADD or ELESUB

PURPOSE: These subroutines add or subtract the corresponding elements of

two matrices respectively.

m*n m*n m*n

[Z] [A] + [B] , j aij + bi

RESTRICTIONS: All matrices must be of identical size and have the integer

number of rows and columns as the first two 
data values. The [Z] matrix

may be overlayed into the [A] or [B) matrix.

CALLING SEQUENCE: ELEADD(A(IC), B (IC),Z(IC))

or ELESUB(A(IC),B(IC),Z(IC))

SUBROUTINES NAMES: ELEMUL or ELEDIV

PURPOSE: These subroutines multiply or divide the corresponding elements

of two matrices respectively.

m*n m*n m*n

[Z] - [A] */ [B] a = aij * bij

RESTRICTIONS: All matrices must be of identical size and have the integer

number of rows and columns as the first two data 
values. The [Z] matrix

May be overlayed into the [A] or [B] matrix.

CALLING SEQUENCE: ELEMUL(A(IC),B(IC),Z(IC))

or ELEDIV(A(IC),B(IC) ,Z(IC))

SUBROUTINE NAME: ELEINV

PURPOSE: This subroutine obtains the reciprocal of each 
element of the A

matrix and places it in the corrresponding element location of the [Z]

tnatrix.

zij =1.0/ai

RESTRICTIONS: The matrices must be of identical size and have the integer

number of rows and columns as the first two data 
values. The [Z] matrix

may be overlayed into the [A] matrix.

CALLING SEQUENCE: ELEINV(A(iC),Z(IC))

117<
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SUBROUTINE NAMES: EFSIN or EFASN

PURPOSE: These subroutines perform elementary functions on all of the [A]

matrix elements as follows:

ij = sin(aij) or ij = arcsine(a)j

RESTRICTIONS: The matrices must be identical in size and have the integer

number of rows and columns as the first two data values. The [Z] matrix

may be overlayed into the [A].matrix.

CALLING SEQUENCE: EFSIN(A(IC),Z(IC))

or EFASN(A(IC),Z(IC))

SUBROUTINE NAMES: EFCOS or EFACS

PURPOSE: These subroutines perform elementary functions on all of the [A]

matrix elements as follows:

z..ij= cosine(aij) or aij = arccosine(aij)

RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. The [Z] matrix

may be overlayed into the [A] matrix.

CALLING SEQUENCE: EFCS (A(IC),Z(IC))

or EFACS(A(IC),Z(IC))

SUBROUTINE NAMES: . EFTAN or EFATN

PURPOSE: These subroutines perform elementary function on all of the [A]

matrix elements as follows:

zij= tangent(aij) or zij= arctangent(aij)

RESTRICTIONS: The matrices must be of identical size and have the integer

number of rows and columns as the first two data values. The [Z] matrix

may be overlayed into the [A] matrix.

CALLING SEQUENCE: EFTAN(A(IC),Z(IC))

or EFATN(A(IC),Z(IC))

A.6-7
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ELEMENTAL OPERATIONS

SUBROUTINE NAMES: EFABS or EFLOG or EFSQR

PURPOSE: These subroutines perform elementary functions on all of the
[A] matrix elements as follows respectively:

zij =Ia I or zij = loge(aij) or ij = -a

RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. All in the [A]
matrix must be positive for EFLOG or EFSQR.

CALLING SEQUENCE: EFABS(A(IC),Z(IC))

EFLOG(A(IC),Z(IC))

EFSQR(A(IC),Z(IC))

SUBROUTINE NAMES: EFEXP or EFPOW

PURPOSE: These subroutines perform elementary functions on all of the [A]
matrix elements as follows:

z .eai or z azij aio zij= aij

RESTRICTIONS: The matrices must be identical in size and have the integer
number of rows and columns as the first two data values. The [Z] matrix
may be overlayed into the [A] matrix. The exponent a may be an integer or
floating point number. However, if any elements in [A] are negative then
a must be an integer.

CALLING SEQUENCE: EFEXP(A(IC),Z(IC))

or EFPOW(A(IC),a,Z(IC))
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ELEMENTAL OPERATIONS

SUBROUTINE NAMES: ADD AP or ALPHAA

PURPOSE:

To add a constant to or multiply a constant times every element i~ a

matrix.

S = C + ai or Z = C*a

RESTRICTIONS:

The matrices must have exactly enough space and contain the integer

number of rows and columns as the first two data values. C and all

elements must be floating point numbers. The [Z] matrix may be over-

layed into the [A] matrix.

CALLING SEQUENCE: ADDALP (C,A(IC, Z (IC))

or ALPHAA(C,A(IC),Z(IC))

SUBRQUTINE NAMES: MATRIX or SCALAR or MATADD

PURPOSE: The subroutine MATRIX allows a constant to replace a specific

matrix element, subroutine SCALAR allows a specific matrix element to be

placed into a constant location, and subroutine MATADD adds a constant to

a specific matrix element. The integers I and J designate the row and

column position of the specific element.

z2 - C or C z or z W z + C
ij *jij.ij

RESTRICTIONS: The matrix must have the integer number of rows and columns
as the first two data values. Checks are made to insure that the
identified element is within the matrix boundaries.

CALLING SEQUENCE: MATRIX,(C, I,J, Z(IC))

or SCALAR(Z(IC),I,J,.C)

or MATADD(C,!, J, Z(IC))
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SUBROUTINE NAME: INVRSE

PURPOSE: To invert a square matrix.

n*n n*n n*n-1

given [A] , [Z] = [A]

RESTRICTIONS: The matrices must be square, identical in size and contain

the integer number of rows and columns as the first two data. values. The

output matrix [Z] may be overlayed into the [A] matrix.

CALLING SEQUENCE: INVRSE(A(IC),Z(IC))

NOTE: This subroutine requires n dynamic storage allocations.

SUBROUTINE NAME: MULT

PURPOSE: To multiply two conformable matrices together.

m*n m*p p*n

[Z] = [A] [B] , zij = aik*bkj

RESTRICTIONS: The matrices must have exactly enough space and contain

their integer number of rows and columns as the first two data values.

If [A] and [B] are square, [Z] may be overlayed into either of them.

CALLING SEQUENCE: MULT(A(IC),B(IC),Z(IC))

NOTE: This subroutine requires n*m dynamic storage locations.

SUBROUTINE NAIE: TRANS

PURPOSE: m*n n*m

Given a matrix [A] form its transpose as [Z]

RESTRICTIONS: Both matrices must have exactly enough space and contain

their integer number of rows and columns as the first two data values.

The output matrix [Z] may be overlayed into the [A] matrix.

CALLING SEQUENCE: TRANS(A(IC),Z(IC))

NOTE: This subroutine requires n*m dynamic storage locations.
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME: AABB

PURPOSE:

To sum two scaled matrices:

m*n m*n m*n

[Z] = Cl[A] + C2[B] , z.. = Cl*a.. + C2*b..

RESTRICTIONS:

All matrices must be of identical size, contain exactly enough space

and contain the integer number of rows and columns as the first two

data values. The output matrix [Z] may be overlayed into either of

the input matrices.

CALLING SEQUENTCE: AABB(Cl,A(IC),C2,B(IC),Z(IC))

SUBROUTINE NAMES: BTAB or BABT

PURPOSE:

To perform the following matrix operations, respectively:

n*m n*mt m*m m*m

[Z] = [B] [A] [B]

m*m m*n n*n n*m
or - [Z] = [B] [A] [B] t

RESTRICTIONS:

The matrices must be conformable, contain exactly enough space and

contain the integer number of rows and columns as the first two data

values. Subroutines MULT and TRANS are called on.

CALLING SEQUENCE: BTAB(A(IC),B(IC),Z(IC))

or BABT(A(IC),B(IC),Z(IC))

NOTE: Due to subroutines MULT and TRANS this subroutine temporarily

requires 2*m*n+6 dynamic storage locations. =
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAMES: DISAS or ASSMBL

PURPOSE:

These subroutines allow a user to operate on matrices in a partitioned
manner by disassembling a submatrix [Z] from a parent matrix [A] or
assembling a submatrix [Z] into a parent matrix [A].

RESTRICTIONS:

The I and J sa-uments are integers which identify (by row and column
number respectively) the upper left hand corner position of the sub-
matrix within the parent matrix. All matrices must have exactly enough
space and contain the integer number of rows and columns as the first
two data values. The NR and NC arguments are the integer number of
rows and columns respectively of the disassembled submatrix. If the
submatrix exceeds the bounds of the parent matrix an appropriate error
message is ritten and the program terminated.

CALLING SUENrE DISAS(A(IC),I,J,NR,NC,Z(IC))

or ASSMBL(Z(IC),I,J,A(IC))

SUBROUTINE 1 AqES: COLMLT or ROWMLT

PURPOSE:

To multiply each element in a column or row of matrix [A] by its
corresponding element from the matrix [V] which is conceptually a
diagonal matrix but stored as a vector; i.e., 1*N or N*l matrix. The
matrix [Z] is the product.

RESTRICTIONS:

The matri s must have exactly enough space and contain the integer
number of - sws and columns as the first two data values. The matrices
being multiplied must be conformable.

.CAILING SEQUENCE: C0LMLT(A(IC),V(IC),Z(IC))

or R0WMLT(V(IC),A(IC),Z(IC))

/23
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAMES: SHIFT or REFLCT

PURPOSE: These subroutines may be used to move an entire matrix from one

location to another SHIFT moves the matrix exactly as is and REFLCT moves

it and reverses the order of the elements within each column. The last

element in each column becomes the first and the first becomes the last, etc.

RESTRICTIONS: The matrices must be of identical size and the integer

number of rows and columns must be the first two data values. The [Z]

matrix may be overlayed into the [A] matrix.

CALLING SEQUENCE: SHIFT(A(IC),Z(IC))

or REFLCT(A(IC),Z(IC))

*REFLCT uses three dynamic storage locations plus an additional 
one for

each row.

SUBROUTINE NAME: SHUFL

PURPOSE: This subroutine allows the user to reorder the size of a matrix

as long as the total number of elements remains unchanged. 
The row order

input matrix [A] is transposed to achieve column order and then 
reformed

as a vector by sequencing the columns in ascending order. This vector is

then reformed into a column order matrix by taking a column 
at a time

sequentially from the vector. The newly formed column matrix is then

transposed and output as the row order matrix [Z].

RESTRICTIONS: The matrices must be identical in size and have their

respective integer number of rows and columns as 
the first two data values.

The number of rows times columns for [A) must equal the number of rows

times columns of [Z].

CALLING SEQUENCE: SHUFL(A(IC),Z(IC))

SUBROUTINE NAMES: COLMAX or COLMIN

PURPOSE: These subroutines search an input matrix to obtain the maximum 
or

minimum values within each column respectively. These values are output as

a single row matrix [A] having as many columns as the input matrix [A].

RESTRICTIONS: Each matrix must have its integer number of rows and columns

as the first two data values.

CALLING SEQUENCE: COLMAX(A(IC),Z(IC))

or COLMIN(A(IC) ,Z(IC))
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAMES: SYMREM or SYMREP

PURPOSE:

These subroutines allow the SINDA user to operate on a single row/column of

a half symmetric matrix. SYMREM will remove a particular row/column from

the half symmetric matrix and place it into an array of the exact length

to hold it. SYMREP will take an array and replace it into a specific row/

column of the half symmetric matrix.

RESTRICTIONS:

The half symmetric matrix must be formatted as shown on page A.8-8. The

jiti ;er K must designate the row/column to be operated on. If K is an

integer zero the main diagonal will be removed or replaced.

CALLING SEQUENCE: SYMDREM(K,SM(IC),A(IC))

or SYMREP(K,A(IC),SM(IC))

SUBROUTINE NAME: SYMDAD

PURPOSE:

This subroutine will add the elements of a vector array to the corresponding

elements of the main diagonal of a half symmetric matrix. If any sum of the
elements is less than zero they are set to zero.

RESTRICTIONS:

The half symetric matrix must be formatted as shown on page A.8-8. The

vector array must be input as a positive array and be the same length as

the matrix order.

CALLING SEQUENCE: SYMDAD(VA(IC),SM(IC))

SUBROUTINE NAME: SYMINV

PURPOSE:

This subroutine obtains the inverse of a half symmetric matrix which is also

symmetric and returns it in the same area as the input matrix. This subroutine

is called internally by subroutines SCRPFA, IRRADI and SLRADI.

RESTRICTIONS:

This subroutine contains no error checks, exercise extreme caution when using it.

CALLING SEQUENCE: SYMINU(A(DV),N)

where A(DV) addresses the 1,1 element and N is the matrix order.
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SUBROUTINE NAME: POLMLT

PURPOSE: This subroutine performs the multiplication of a given number of

ntf order polynomial coefficients by a similar number of mth order poly-

nomial coefficients. The polynomials must be input as matrices with the

number of. rows equal and each row receives the following operation.

(cl,c 2 ,c3,...,ck) = (al,a2 ,...,a n ) * (bl,b2 ,..,bm),k=m+n-1

RESTRICTIONS: The matrices must have exactly enough space and contain
their integer number of rows and columns as the first two data values.

CALLING SEQUENCE: P0LMLT(A(IC),B(IC),C(IC))

SUBROUTINE NAME: POLVAL

PURPOSE: Given a set of polynomial coefficients as the first row of matrix
[A], this subroutine evaluates the polynomial for the input complex number

X+iY. The answer is returned as U+iV.

RESTRICTIONS: [A] may be m*n but only the first row is evaluated.

CALLING SEQUENCE: POLVAL(A(IC),X,Y,U,V)

SUBROUTINE NAME: PLYEVL

PURPOSE: Given a matrix [A] containing an arbitrary number IRA of the nth

order polynomial coefficients and a column matrix [X] containing an arbitrary
number of NRX of x values, this subroutine evaluates each polynomial for X

value. The answers are output as a matrix [Z] of size NRX*NRA. Each set
of polynomial coefficients in [A] is a row in ascending order. An x value

evaluated for the polynomial creates a row in [Z] where the column number
agrees with the polynomial row number.

RESTRICTIONS: The matrices must have exactly enough space and contain
their integer number of rows and columns as the first two data values.

CALLING SEQUENCE: PLYEVL(A(IC),X(IC),Z(IC))

SUBROUTINE NAME: POLSOV

PURPOSE: Given a set of polynomial coefficients as the first row in
matrix [A], size (m,n+l), this subroutine calculates the complex roots
which are returned as matrix [Z], size (n,2). Column 1 contains the real
part and column 2 imaginary part of the roots.

RESTRICTIONS: This subroutine presently is limited to n = 20. It
internally calls on RTPOLY and utilizes some double precision.

CALLING SEQUENCE: POLSOV(A(IC),Z(IC))
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SUBROUTINE NAME: JACOBI

PURPOSE:

This subroutine will find the eigenvalues [E] and eigenvector matrix [Z]

associated with an input matrix [A].

n*n n*n n*n n*n

[A] [Z] = [ZI [E]

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer

number of rows and columns as the first two data values. Note that
matrix [E] is a diagonal matrix but is stated as .a vector.

CALLING SEQUENCE: JACOBI(A(IC),E(IC),Z(IC))

NOTE: This subroutine requires 2*n*n+6 dynamic storage locations.
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STORE AND RECALL

MATRIX DATA .STORAGE AND .RETRIEVAL

Th abliity to store and retrieve matrices from tape is easily achieved

throUgh the use of the FILE and CALL subroutines. Matrices are identified

by an alphanumeric name, integer problem number and the core address of or

for the matrix. The CALL subroutine searches the matrix storage tape on

logical 13 and brings the desired matrix into core. The FILE subroutine

writes a matrix onto the logical 12 tape. Subroutine ENDMOP causes all

matrices from the logical 12 tape to be updated onto the logical 13 tape.

in case of duplicate matrices, the one from logical 12 replaces the one on

logical 13. A matrix which has been filed cannot be called until an

ENDMP operation has been performed. To create a new tape the user merely

sets control constant NOCOPY nonzero and has a scratch tape mounted on

logical 13. The user should check the section on control cards and deck

setup to determine control.card requirements. (Appendix E)

SUBROUTINE NAMES: CALL or FILE

PURPOSE:

To allow the user to retrieve or store matrices on magnetic tape, see above

The H argument must be a six character alphanumeric word and N must be an

integer number, both of which are used to identify the matrix.

RESTRICTIONS:

See above. The matrix must have exactly enough space and contain the

integer number of rows and columns as the first two data values.

CALLING SEQUENCE: CALL(H,N,A(IC))

or FILE(A(IC),H,N)

SUBROUTINE NAMES: ENDMOP or LSTAPE

PURPOSE:

Subroutine ENDMOP should be used in conjunction with subroutines CALL and

FILE- see above. It causes matrices which have been filed by FILE on

logical 12 to be updated onto logical 13. A call to subroutine LSTAPE will

cause the output of the names problem number and size of every matrix stored

oh tape on logical 13.

RESTRICTIONS: See above.

CAiiNG. SEQUENCE: ENDMOP

or LSTAPE
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APPLICATION -- DYNAMIC VIBRATION

SUBROUTINE NAME: MODES

PURPOSE:

This subroutine solves the following dynamic vibration equation

n*n n*n n*n n*n n*n
[A] [Z] = [B] [Z]

where [A] is the input inertia matrix associated with the kinetic energy
and [B] is the input stiffness matrix associated with the strain energy.
[Z] is the output eigenvector matrix associated with the frequencies of
vibration W which are output in radians/sec as [R] and in cycles/sec as
[C], both [i] and [C] are n*n diagonal matrices but stored as vectors.

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values. Subroutine
JACOBI is called on.

CALLING SEQUENCE: MODES(A(IC),B(IC),Z(IC),R(IC),C(IC))

NOTE: This subroutine requires 3*n*n+9 dynamic storage locations.
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SUBROUTINE NAME: MASS

PURPOSE:

If a dynamic vibration problem is referred to a set of coordinates con-
sisting of the deflections,Ci, and the rotations,Oi, at N collocation
points along the beam under consideration, then this subroutine generates
the 2N by 2N inertia matrix [A] which appears in the following expression
for kinetic energy:

T [A]

n

n

RESTRICTIONS:

.The mass and inertia data input to this subroutine are to be supplied as
piecewise continuous slices; however, these arrays may be of arbitrary
size and different in length from each other. The number of collocation
points, N, which determines the ultimate size, 2N by 2N, of the output
inertia matrix, is also chosen arbitrarily.

CALLING SEQUENCE: MASS (X(IC) ,DMPL(IC),RIPL(IC), CM(IC) ,A(IC))

where X is the matrix (N X 1) of collocation points referred to an
arbitrary origin.

DMPL is the matrix(NDM X 4) of distributed mass per unit length
slices, where
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the mass value at the rear of the slice.
Col 4 is the mass value at the front of the slice.

RIPL is the matrix (NRI X 4) of distributed rotary inertia per unit
length slices. The columns here are similar to DMPL.

CM is the matrix (NCM X 4)of concentrated mass items, where
Col I is the attach point location for each item.
Col 2 is the mass at this location.
Col 3 is the location of its center of gravity.
Col 4 is the moment of inertia about the C. of G.

A is the output (2N X 2N) inertia matrix.

NOTE: Having application to DMPL, RIPL and CM, it is noted that the location
of the values may not go beyond the limits of the collocation points in
either direction.
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SUBROUTINE NAME: STIFF

PURPOSE:

If a dynamic vibration problem is referred to a set of coordinates con-
sisting of the deflections, i, and the rotations, Oi, at N collocation
points along the beam under consideration,then this subroutine generates
the 2N by 2N stiffness matrix [K] which appears in the following expression
for the strain energy:

U 1= 1 e...n.1" n [K] 1

2 1

n

RESTRICTIONS:

The stiffness and shear data input to this subroutine are to be supplied
as piecewise continuous slices; however, these arrays may be of arbitrary
size and different in length from each other. The number of collocation
points, N, which determine the ultimate size, 2N by 2N, of the output
stiffness matrix, is also chosen arbitrarily.

CALLING SEQUENCE: STIFF(((IC),EI(IC),GA(IC),K(IC))

where X is the matrix (N X 1) of collocation points referred to an
arbitrary origin.

El is the matrix (NEI X 4) of bending stiffness slices, where
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the stiffness value at the rear of a slice.
Col 4 is the stiffness value at the front of a slice.

GA is the matrix (NGA X 4) of shear stiffness slices, where
the columns here are similar to those for the El distribution.

K is the output stiffness matrix size 2N by 2N.

NOTE: Having application to El and GA, it is noted that the location of
the values may not go beyond the limits of the collocation points in
either direction.
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A.7 OUTPUT SUBROUTINES

Data Input and Temperature Printout

GPRINT Causes the printout of all conductor values or heat A.7-3

QFPRNTJ flow rates through conductors

TPRINT Causes the printout of all nodal temperatures, all

CPRINT capacitance values, all impressed heating rates

QIPRNT or all net heat rates for the nodal network under '

QNPRNT consideration

Numerical Differencing Characteristics Printout

STNDRD Causes a line of output to be printed giving present A.7-4

time, last time step used, most recent CSGMIN,

maximum diffusion change calculated over the last

time step and maximum relaxation calculated over

the last iteration

PRNTMP Calls on STNDRD and also lists temperature of every
node in the network according to relative node

number

Floating Point

PRINT Allows individual floating point numbers to be "

PRINTL printed for reference temperature, capacitance,
etc.

Array Printout

PRINTA Allows the user to printout an array of values five A.7-5

to the line

PRNTMA Allows the user to print up to 10 arrays in a
column format

PUNCHA Enables a user to punch out an array of data values A.7-6

in any desired format

PNCHMA Similar to PUNCHA but up to 10 equal length arrays
of data values may be punched

Plot Package

PLOTXl A. 7-7

PLOTX2 it
PLOTL1 Call upon a large package of undocumented
PLOTL2 subroutines specifically for the SC-4060

PLOTX3 A.7-6
PLOTX4

SC-4060 Plot Syrbol Dictionary A,7-9
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Read and Rewind

READ Enables the user to read and write arrays of data A.7-10

WRITE as binary information on magnetic tape "

EOF Enables the user to write end of file marks on

REWINDJ magnetic tape and to rewind them,"

LIST Prints the elements of a matrix and identifies each A.7-11

by its row and column number

PUNCH Punches out a matrix, size n*n, one column at a time "

in any desired format

SYMLST Prints out and identifies the element values of a I

half symmetric matrix

PNTABL Provides output information for users of sub- A.7-12

routine ABLATS

133<
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SUBROUTINE NAMES: GPRINT or QFPRNT

PURPOSE:

These subroutines cause the printout of all conductor values or heat flow
rates through conductors. All values are printed out versus the actual
conductor numbers on which they occur. When using either of these subrou-
tines the user must allocate one dynamic storage location for each conduc-
tor in the system. The locations are permanently retained for storage of
the actual conductor numbers and is common to all subroutines* requiring
them. In addition, subroutine QFPRNT requires one extra dynamic storage
location per conductor for temporary storage of heat flow rates through the
conductors.

RESTRICTIONS:

These subroutines require no arguments and are generally called from the
EXECUTION or OUTPUT CALLS block; do not call them from VARIABLES 1. Non-
linear conductors are evaluated prior to calculation and/or printing of
requested values.

CALLING SEQUENCE:
GPRINT or QFPRNT

*For example, the actual conductor numbers stored by GPRINT are available
to CSGDMP and RCDUMP, thereby conserving dynamic storage.

SUBROUTINE NAMES: TPRINT or CPRINT or QIPRNT or QNPRNT

PURPOSE:

These subroutines cause the printout of all nodal temperatures, all
capacitance values, all impressed heating rates or all net heating rates
for the nodal network under consideration. All values are printed out ver-
sus the actual node numbers on which they occur. When using any of these
subroutines the user must allocate one dynamic storage location for each
node in the system. The locations are permanently retained for storage of
the actual node numbers and is common to all subroutines* requiring them.
It should be noted that TPRINT call on STNDRD (page A.7-41.

RESTRICTIONS:

These subroutines require no arguments and are generally called from the
EXECUTION or OUTPUT CALLS block; do not call them from VARIABLES 1. Non-
linear network elements are evaluated prior to calculation and/or printing
of requested values.

CALLING SEQUENCE:
TPRINT or CPRINT or QIPRNT or QNPRNT

*For example, the actual node numbers stored by TPRINT are available to
CSGDMP and RCDUMP, thereby conserving dynamic storage.

134<
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NUMERICAL DIFFERENCING CHARACTERISTICS FLOATING POINT PRINTOUT

SUBROUTINE NAMES: STNDRD or PRNTMP

PURPOSE:

Subroutine STNDRD causes a line of output to be printed giving the present

time, the last time step used, the most recent CSGMIN value, the maximum

diffusion temperature change calculated over the last time step and the

maximum relaxation change calculated over the last iteration. ANN refers

to the actual node number on which something occurred. The line of out-

put looks as follows:

TIME DTIMEU CSGMIN(ANN) TEMPCC(ANN) RELXCC(ANN)

Subroutine PRNTMP internally calls on STNDRD and also lists the tempera-

ture of every node in the network according to relative node number. The

relative node number - actual node number dictionary printed out with the

input data should be consulted to determine temperature locations on the

thermal network model.

RESTRICTIONS:

No arguments are required or allowed. These subroutines should be used

with network problems only.

CALLING SEQUENCE:

STNDRD

or PRNTMP

SUBROUTINE NAMES: PRINT or PRINTL

PURPOSE:

These subroutines allow individual floating point numbers to be printed.

The arguments may reference temperature, capacitance, source locations,

conductors, constants or unique array locations. In addition, subroutine

PRINTL allows each value to be preceded or labeled by a six character

alphanumeric word. The number of arguments is variable but the "label"

array used for PRINTL should contain a label for each argument.

RESTRICTIONS:

These subroutines do not call on STNDRD. The user may call on it if he

desires time control information. Any control constant may be addressed

in order to see what its value is, integers must first be floated.

CALLING SEQUENCE:
PRINT(T,C,Q,G,K,... ,A+)

or PRINTL(LA(DV),T,C,Q,G,K,...,A+)
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SUBROUTINE NAME: PRINTA

PURPOSE:

This subroutine allows the user to print out an array of valueso five to

the line. The integer array length N and the first data value location

must be specified. Each value receives an indexed label, the user must

supply a six character alphanumeric word L to be used as a common label

and an integer value M to begin the index count.

RESTRICTIONS:

The array values to be printed must be floating point numbers.

CALLING SEQUENCE:
PRINTA(L,A(DV),N,M)

If the label was the word TEMP, N was 3 and M was 6 the line of output

would look as follows:

TEMP ( 6)value TEMP ( 7)value TEMP ( 8)value

SUBROUTINE NAME: PRNTMA or PRNTMI

PURPOSE:

This subroutine allows the user to print out up to 10 arrays in a column

format. The individual elements are not labeled but each column receives

a two line heading of 12 alphanumeric characters each. The two line

heading must be supplied as a single array of four words, six characters

each. The user must supply the starting location of each label array and

value array. The number of values in each value array must agree and be

supplied as the integer N. The value arrays must contain floating point

numbers.

RESTRICTIONS:

Labels must be alphanumeric while values must be floating point. All

floating point value arrays must contain the same number of .values.

CALLIG SEQUENCE:
PRNTMA(N,LAI(DV),VAl(DV),LA2(DV),VA2(DV),...)

PRNTMI(N,LA1(DV),VAl(DV),LA2(DV),VA2(DV),...)

* VAI must address array of integers (lst column)

.716<
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ARRAY PRINTOUT

SUBROUTINE NAME: PUNCHA

PURPOSE:

This subroutine enables a user to punch out an array of data values in any
desired format. The F argument must reference a FORTRAN FORMAT which has
been input as an array, including the outer parenthesis but deleting the
word FORMAT.* The second argument must address the first data value of the
array of sequential values. The third argument, N, must be the integer
number of data values in the array. The output is written onto logical
tape 15, the user must provide the necessary control cards and processing
information for the operator.

RESTRICTIONS:

The user should checkAppendix Efor the appropriate control card require-
ments. Punched output is written on logical tape 15, operator processing
instructions should be supplied.

CALLING SEQUENCE: PUNCHA (F(DV),A(DV),N)

SUBROUTINE NAME: PNCHMA

PURPOSE:

This subroutine is similar to PUNCHA, but up to 10 equal length arrays of
data values may be punched. Again the first argument must reference a
FORTRAN FORMAT which has been input as an array, including the outer
parenthesis, but deleting the word FORMAT. The integer number of data
values in an array must be supplied as the second argument N. The array
starting locations then follow as arguments three up to twelve. The first
value in each array is punched, then the second, etc.

RESTRICTIONS:

The user should checkAppendix E for the appropriate control card require-
ments. Punched output is written on logical tape 15, operator processing
instructions should be supplied.

CALLING SEQUENCE: PNCHMA(F(DV),N,Al(DV),A2(DV),...)

* For example, if F(DV) were A5+1, A5 could be input as follows:

(Col) 7 12
5

BCD 4(12X,5(F9.3,1H,),F9.3)
END
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SUBROUTINE NAMES: PLOTX1 or PLOTX2 or PL.TL1 or PLOTL2

PURPOSE:

These FORTRAN V coded quick plot subroutines call upon a large package of
undocumented subroutines specifically for the SC 4060. They will produce
up to four graphs per frame and several variables may be plotted per graph.
A suitable grid will be drawn with certain lines emphasized. The grid
lines will have reasonable numerical indicia and centered title will be
printed for both axes and at the top of the graph.

PLOTXl and PLOTL1 will compute the minimum and maximum values of the stored
X and Y arrays to be plotted and calls upon PLOTX2 or PLOTL2 which use the
values as grid limits for the graph. The user may set the grid limits by
calling PLOTX2 and PLOTL2 directly. The X, Y and top titles (XT, YT and
TT respectively) must consist of 9 alphanumeric words of six characters
each.

RESTRICTIONS:

The user should consult Appendix E, Control Cards and Deck Setup to check
tape designation requirements. The X and Y values must be floating point
numbers. The user must call subroutine PLTND after all his plotting is
done. No limit may be zero for log plots.

CALLING SEQUENCE:

PLOTX1(N,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV), AY(DV))
or

PLOTX2(N,XL,XR,YB,YT,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV),AY(DV))

PLOTL1(N,IS,TX(DV) ,TY(DV),TT(DV),NP,AX(DV),AY(DV),LM)
or

PLOTL2(N,XL,XR,YB,YT,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV),AY(DV),LM)

Where N is the integer number of graphs per frame (1, 2, 3 or 4),
if zero, the grid from the previous plot call is used.

IS is the integer identifying the plotting symbol (1-144)
TX is the address of the X title
TY is the address of the Y title
TT is the address of the top title
NP is the integer number of XY values or points to be plotted,

if negative the points will be connected by straight lines.
AX is the address of the X array
AY is the address of the Y array
XL is the floating point X axis left limit
XR is the floating point X axis right limit
YB is the floating point Y axis bottom limit
YT is the floating point Y axis top limit
LM is an integer identifying the log plotting mode;

if less than zero plot log X versus linear Y,
if equal to zero plot log X versus log Y,
if greater than zero plot linear X versus log Y

138<
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SUBROUTINE NAMES: PLOTX3 or PLOTX4

PURPOSE:

.These subroutines are similar to PLOTX1 and PLOTX2 but have 6 additional

arguments which allow the user to modify the grid as desired.

RESTRICTIONS:

See PLOTX1 and PLOTX2.

CALLING SEQUENCE:

PLOTX3(N,IS,TX(DV) ,TY(DV) ,TT(DV) ,NP,AX(DV) ,AY(DV),DX,DY,L,M,I,J)
or

PLOTX4(N,XL,XR,YB,YT,IS,TX(DV),TY(DV) ,TT(DV),NP,AX(DV) ,AY(DV) ,DX,
DY,L,M,I,J)

* here the arguments are- identical to PLOTX1 and PLOTX2 except for

DX,DY these floating point values are used for spacing the grid
lines which are centered on the zero values. If zero, no
grid lines will be drawn. th Mth

L,M these integers cause every L vertical and M horizontal
grid line to be redrawn for emphasis. If zero, no grid lines
will be emphasized. If negative, a square grid will be
produced. th th

I,J these integers cause every I vertical and J horizontal
grid line to be labeled with its value. If zero, no grid
lines will be labeled. If negative, the labels will be
placed outside the grid, otherwise they will appear on the
zero axis.

A39
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SC-4060 PLOT SYMBOL DICTIONARY

(for use with quick plot subroutines only)

Integer Symbol Integer Symbol Integer Symbol Integer Symbol

1 A 31 4 61 m . 105 f

2 iB 32 5 62 n 106 '3

3 C 33 6 63 .o 107 o

4 D 34 7 64 p 108 <

5 E 35 8 65 q 109 #

6 F 36 9 66 r 110 -- (logical .inverse)

7 G 37 .(blank) 67 s 111

8 H .38 68 .t 112 1

9 I 39 , 69 u 113

10 J 40 '(close quote) 70 .v 114 O

.11 K 41 $ 71 w 115 E

12 L 42 ( 72 x 116 -(tilde)

13 M. 43 ) .73 y 117 M (lozenge)

14 N 44 / 74 z 118

15 0 45 . -(minus) 88 " 12.1

16 P 46 + 89 .122

17 Q 47 * 90 1 123 o(circle)

18 R - 48 = 91 ]. 124

19 .S 49 a 92 ? 125

20 T 50 b 93 -(hyphen) 126

.21 U 51 c 94 1 127 .

22 V 52 d 95 136 ' (open quote)

.23 W 53 .e 96 138

24 X 54 .f 97 a 139 }
25 Y 55 .g ..98 . 140

26 ; 56 h 99 ^ (caret) .141 -(bar)

27 0 57 1 100 ,6 142 +

28 1 58 j 102 % 143 @

29 2 59 -k .103 y 144 .&

30 3 60 1 104 >

140<
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READ AND REWIND

SUBROUTINE NAMES: READ or WRITE

PURPOSE:

These subroutines enable the user to read and write arrays of data as binary
information on magnetic tape. The first argument L must be the integer
number of the logical tape being addressed. The second argument X must
address the first data value of the array to be written out or starting
location for data to be read into. The third argument N must be an integer.
For WRITE it is the number of data values to be written on tape as a record.
For READ it is the number of data values to be read in from tape from the
next record, not necessarily the entire record.

RESTRICTIONS:

The user should check Appendix E to determine which logical tapes are available
and control card requirements. All processed information must be in binary.

CALLING SEQUENCE: READ(L,X(DV),N)

or WRITE(L,X(DV),N)

SUBROUTINE NAME: EOF or REWIND

PURPOSE:

These subroutines enable the user to write end of file marks on magnetic
tape and to rewind them. They are generally used in conjunction with
subroutines READ and WRITE discussed above. The single argument L must be
the integer logical tape number of the unit being activiated.

RESTRICTIONS:

The user should check Appendix E to determine available logical tapes.

CALLING SEQUENCE:

EOF(L)

or REWIND(L)

141<
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SUBROUTINE NAME: LIST

PURPOSE:

This subroutine prints the elements of a matrix [A] and identifies each

by its row and column number. The user must supply an alphanumeric name

ALP and integer number NUM to identify the matrix. This is to maintain

consistency with subroutines FILE and CALL.

RESTRICTIONS:

The matrix must have its integer number of rows and columns as the first

two data values.

CALLING SEQUENCE:

LIST(A(IC) ,ALP,NUM)

SUBROUTINE NAME: PUNCH

PURPOSE:

This subroutine punchs out a matrix [A] , size n*m, one column at a time

in any desired format. The argument FOR must reference a FORTRAN format

statement that has been input as a positive array. It must include the

outer parenthesis but not the word FORMAT. The argument HEAD must be a

single BCD word used to identify the matrix. Each column is designated

and restarts use of the FORMAT statement.

RESTRICTIONS:

The matrix [A] must have exactly enough space and contain the integer

number of rows and columns as the first two data values.

CALLING SEQUENCE:

PUNCH(A(IC),HEAD,FOR(IC))

NOTE: This subroutine requires n+3 dynamic storage locations.

SUBROUTINE NAME: SYMLST

PURPOSE:

To print out and identify the element values of a half symmetric matrix

This output subroutine is most generally used with subroutine SCRPFA,

see page A.8-10.

RESTRICTIONS:

This subroutine has no error checks built in so please exercise caution

when using.

CALLING SEQUENCE: SYMLST(A(DV),N)

where A(DV) addresses the 1,1 element and N is the matrix order.
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OUTPUT FOR ABLATS

SUBROUTINE NAME: PNTABL

PURPOSE:

To provide output information for users of subroutine ABLATS. The ABLATS

routine performs ablative simulation calculations but since it is called

in Variables 2 it performs no output. The user must call PNTABL in the

Output Calls block and reference the ablative array of the ABLATS call.

When the ablative material is expended, ABLATS will call PNTABL directly

and also cause current problem time to be printed.

RESTRICTIONS:

This routine is called in conjunction with subroutine ABLATS only, see

page A.8-5.

CALLING SEQUENCE: PNTABL(AA(IC))

143
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A.8 APPLICATION SUBROUTINES

Fluid Flow

PRESS Impresses nodal pressures in one dimensional flow 
A.8-2

SPRESS paths once the entry pressure, path conductance

and flow rate are known

EFFG Calculates the effective conductance between two

points for a specific type of pressure 
network

QMETER 
A.8-3

RDTNQS Used for calculating flow rates i
QMTRI

QFORCE ,

QINTEG Performs simple integration useful in conjunction

QINTGI with QMIETER, RDTNQS, QMTRI, and QFORCE

BIVLV Allows the user to specify the percentage flow A. 8-4

rates through two parallel tubes with common

end points

Phase Change

ABLATS Represents a simple ablation (sublimation) capability A.8-5

LQSLTR Accounts for the phase change energy of a melting 
A.8-6

or solidifying material

LQDVAP Allows the user to simulate the addition of 
liquid A.8-7

to a node

Thermal Radiation Exchange

IRRADI Simulates a radiosity network within a multiple A. 8-8

IRRADE grey surface enclosure containing a non-absorbing

media
SLRADI Similar to IRRADI and IRRADE but designed to solve A.8-9

SLRADE for the solar heating rates within an enclosure "

EFFEMS Calculates the effective emissivity between parallel

flat plates

SCRPFA Obtains the script FA value for radiant transfer A.8-10

within an enclosure

144<
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FLUID FLOW

SUBROUTINE NAMES: PRESS or SPRESS

PURPOSE:

These routines are useful for impressing nodal pressures in one
dimensional flow paths once the entry pressure P1, path conductance G and
flow rate W are known. The respective equations are:

P2 = P1-W/G
or Pl(i + 1) = Pl(i)-W/G(i), i = 1,2,3,...,N

RESTRICTIONS:

For SPRESS, the pressures and conductors must be sequential and in
ascending order, the number of pressure points to be calculated must be
supplied as the integer N.

CALLING SEQUENCE: PRESS(PI,W,G,P2)

SPRESS(N, P1 l(DV),W,G(DV))

SUBROUTINE NAME: EFFG

PURPOSE:

For a pressure network of the following type:

G 3
1 --- 1----

Any Inter-
. 9 P

1 Iconnections ? 2

2 -- - - - - - - - - - -
2 P4

where the values of the identified elements are known, this subroutine will
calculate the effective conductance GE from P1 to P2. Any interconnections
may occur in the space but only P2, P3 and P4 may be on the boundary and no
elements may cross it. The equation utilized is:

GE = (Gl*(Pl-P3) + G2*(Pl-P4))/(Pl-P2)

RESTRICTIONS:

See above. May not be used where capacitors appear on the internal nodes.

CALLING SEQUENCE: EFFG(P1,P2,P3,P4,G1,G2,GE)

A.8-2
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FLUID FLOW

SUBROUTINE NAMES: QMETER or RDINQS or QMTRI or QFORCE

PURPOSE:

These subroutines are generally used for calculating flow rates. Their
respective operations are:

A = B*(C-D)
or A = B*((C+460.)4-(D+460.)4 )
or Ai = Bi*(Ci-Ci+l) , i = 1,N
or Ai = Bi*(Ci-Di) , i = 1,N

RESTRICTIONS:

All values must be floating point numbers except the array length N which
must be an integer.

CALLING SEQUENCE: QMETER(C,D,B,A)

or RDTNQS(D,C,B,A)

or QMTRI(N,C(DV),B(DV),A(DV))

or QFORCE(N,C(DV),D(DV),B(DV),A(DV))

SUBROUTINE NAMES: QINTEG or QINTGI

PURPOSE:

These subroutines perform ;-imple integration. They are useful for obtaining
the integrals of flow rates calculated by QMETER, RDTNQS, QMTRI or QFORCE.
Their respective operations are:

S = S+Q*DT
or Si = Si+Qi*DT , i = 1,N

RESTRICTIONS:

All values must be floating point numbers except N which must be an integer.
Control constant DTIMEU should be used for the step size when doing an
integration with respect to time. These subroutines should be called in
Variables 2.

CALLING SEQUENCE: QINTEG(Q,DT,S)

or QINTGI(N,Q(DV),DT,S(DV))
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FLUID FLOW

SUBROUTINE NAME: BIVLV

PURPOSE:

This subroutine allows the user to specify the percentage flow rates
through two parallel tubes with common end points. One tube must consist
of a single flow conductor (Gl) while the other tube may consist of one or
more sequential flow conductors (G2(I), I = 1,N). The ratio of flow
through Gl divided by the total flow may be calculated in any desired
manner and must be supplied as the argument W. The conductor values of
either one tube or the other are reduced in order to achieve the desired
percentage flow rates irregardless of the pressure drop.

RESTRICTIONS:

N must be an integer. G2 must address the first of the sequential con-
ductors in that tube.

CALLING SEQUENCE: BIVLV(N,W,G1,G2(DV)
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1

SUBROUTINE NANE: ABLATS

PUPPOSE:

To provide a simple ablation (sublimation)capability for the SINDA user. Tho

user constructs the 3-D network without considering 
the ablative. Then in

Variables 2 he simulates 1-D ablative attachments 
by calling ABLATS, ABLATS

constructs the 1-D network and solves it by 
implicit forward-backward

differencing (Crank-Nicholson method) using 
the time step set by the execu-

tion subroutine. Separate ablation arrays (AA) must be used for each ABLATS

call. Required working space is obtained from unused 
program common. Several

ABLATS calls thereby share unused common. The user must call subroutine

PNTADL(AA) in the Output Calls to obtain ablation totals 
and temperature

distribution..

RESTRICTIONS:

ABLATS must be called in Variables 2 and may 
be used with any execution sub-

routine. Subroutines DIDEGI, NEWTR4 and INTRFC are called. 
All units must be

.consistent. The Fahrenheit system is required. Temperature varying material

property arrays must not exceed 60 doublets. 
Bivariate material properties

may be simulated by calling BVSPS.~ prior to ABLATS. Cross-sectional area is

always considered unity. Thermal conductivity, Stefan-Boltzmann constant 
ard

density units must agree in area and length uiits,

CALLING SEQUENCE: ADLATS(AA(IC) ,R,CP,G,T,C)

where. C is the capacitance location of the 3-D node attached 
to.

T is the temperature location of the 3-D node 
attached to.

G is the location of the material thermal conductivity 
or the

starting location (integer count)of a doublet G vs T array.

CP is the location of the material specific heat or the 
starting

location (integer count) of a doublet Cp vs T array.

R is the location of the material density or the starting 
location

(integer count) of a doublet R vs T array.

AA(IC) is the starting location of the ablation 
array which must 'b

formatted as follows:

AA(IC)+l. the ablative line number, a. user specified 
identificati;on in.teger.

2 integer number of sublayers (NSL) desired, ABLATS 
subtracts from

this the number of sublayers ablated.

3 the initial temperature- of the material, ABLATS replaces 
this

with the outer surface temperature, always in 
degrees F.

4: the impressed outer surface heating rate per unit area,

radiation rates not included.

5 material thickness; this is replaced by the sublayer -hic.kn.ess.

6 surface area of the 3-D node attached to,, need iot .be unity.

7 ablation temperature,. degrees F.

8 heat of ablation.

9* Stefan-Boltzmann constant in. consistent 
units.

10 surface emissivity..

11 space "sink" temperature, degrees 
F.

12 SPACE,,N,END where N equals NSI + 4.

NOTE: The outer surface radiation loss is integrated over .bhe t-Ime step.

*This subroutine requires 3*(NSI+l.) dynamic storage 
core locations.
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PHASE CHANGE

SUBROUTINE NAME: LQSLTR

PURPOSE:

This subroutine accounts for the phase change energy of a melting or
solidifying material. The temperature limits for the reaction must be
specified (over at least a 1 degree range) and the phase change energy
supplied as a constant rate over the range (Btu/OF). The network is
constructed to include the capacitance effects of the phase change material.
The network solution subroutines are allowed to calculate incorrect
answers based on capacitance effects only; a call to LQSLTR in Variables 2
then performs a corrector operation to account for any phase change
occurring (reversability allowed) and returns corrected temperatures. The
user is required to store the old temperature of the material (in
Variables 1) and supply it as an argument to LQSLTR. This subroutine has
a "DO" loop built in and can be applied to several sequential nodes at
once.

RESTRICTIONS:

The number of sequential nodes that this subroutine is to be applied to
must be supplied as the integer N. All other arguments must be or address
data values.

CALLING SEQUENCE: LQSLTR(N,TL,TH,S(DV),C(DV),TO(DV),TN(DV))

where N is the integer number of nodes to operated on
TL is the low temperature of the range
TH is the high temperature of the range
S(DV) is the first series value of the phase change energy rate
C(DV) is the first series value of the nodal capacitances
TO(DV) is the first series value of the old temperatures
TN(DV) is the first series value of the new temperatures

149<
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PHASE CHANGE

SUBROUTINE NAME: LDVAP

PURPOSE:

This subroutine allows the user to simulate the addition of liquid to a
node. The network data is prepared as though no liquid exists at the
node and is solved that way by the network execution subroutine. Then
LQDVAP, which must be called Variables 2, corrects the nodal solution
in order to account for the liquid. If the nodal temperature exceeds the
boiling point of the liquid, it is set to the boiling point.

The excess energy above that required to reach the boiling point is
calculated and considered as absorbed through vaporization. If the liquid
is completely vaporized the subroutine deletes its operations. The method
of solution holds very well for explicit solutions, but may introduce some
error when large time steps are used with implicit solutions.

RESTRICTIONS:

This subroutine must be called in Variables 2.

CALLING SEQUENCE: LQDVAP(T,C,A(IC))

where T is the temperature location of the node.
C is the capacitance location of the node.
A + 1 contains the initial liquid weight.

2 contains the liquid specific heat.
3 contains the liquid vaporization temperature.
4 contains the liquid heat of vaporization.
5 receives the liquid vaporization rate (weight/time)
6 receives the liquid vaporization total (total weight)
7 contains the liquid initial temperature.

150<
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SUBROUTINE NAMES: IRRADI or IRRADE

PURPOSE:

These subroutines simulate a radiosity network* within a multiple gray
diffuse surface enclosure containing a non-absorbing media. The input is
identical for both subroutines. However, IRRADE utilizes explicit equations
to obtain the solution by relaxation and IRRADI initially performs a
symmetric matrix algebra inverse and thereafter obtains the exact solution
implicitly by matrix multiplication. The relaxation criteria of IRRADE is
internally calculated and severe enough so that both routines generally yield
identical results. However, IRRADE should be used when temperature varying
emissivities are to be considered and IRRADI should be used when the surface
emissivities are constant. Both subroutines solve for the J node radiosity,
obtain the net radiant heat flow rates to each surface and return them
sequentially in the last array that was initially used to input the surface
temperatures. The user need not specify any radiation conductors within the
enclosure.

RESTRICTIONS:

The Fahrenheit system is required. The arbitrary number of temperature
arguments may be constructed by a preceding BLDARY call. The emissivity,
area, temperature-Q and upper half FA arrays must be in corresponding order
and of exact length. The first data value of the FA array must be the integer
number of surfaces and the.second the Stefan-Boltzmann constant in the proper
units and then the FA floating point values in row order. The diagonal ele-
ments (even if zero) must be included. As many radiosity subroutine calls as
desired may be used. However, each call must have unique array arguments.
The user should follow the radiosity routine by SCALE, BRKARY or BKARAD to
distribute the Q's to the proper source locations.

CALLING SEQUENCE: IRRADI(AA(IC) ,Ae(IC) ,AFA(IC) ,ATQ(IC))

or IRRADE(AA(IC),Ac(IC),AFA(IC),ATQ(IC))

where the arrays are formatted as follows:

AA(IC),Al,A2,A3,A4,..,AN,END
Ac(IC),c1,e2,c3,4,...,EN,END
AFA(IC),N,a,FA(1,1),FA(1,2),FA(1,3),FA(1,4),FA(1,5),..,FA(1,N)

FA(2,2),FA.(2,3),FA(2,4),FA(2,5),..,FA(2,N)

FA(N-2 ,N-2) ,FA(N-2 ,N-1),FA(N-2,N)
FA(N-l,N-l),FA(N-l,N)

FA(N,N),END
ATQ(IC),T1,T2,T3,..,TN,END

where FA(1,2) is defined as A(1)*F(1,2). After the subroutine is performed
the ATQ array is ATQ(IC),Q1,Q2,Q3,..,QN,END.
Since FAI(1,2)-FA2(2,1) only the upper half triangle of the full FA matrix
is required. IRRADI inverts this half matrix in its own area, hence
approximately 300 surfaces may be considered using SINDA on a 65K core machine.

*"Radiation Analysis by the Network Method," A. K. Oppenheim, Transaction of
the ASME, May 1956, pp. 725-735.
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THERMAL RADIATION EXCHANGE

SUBROUTINE NAMES: SLRADI or SLRADE

PURPOSE:

These subroutines are very similar to IRRADI and IRRADE but are designed to
solve for the solar heating rates within a enclosure. SLRADI inverts a half
symmetric matrix in order to obtain implicit solutions, while SLRADE obtains
solutions explicity by relaxation. SLRADE should be used when temperature
varying solar absorptivities are to be considered. The second data value of
the AFA array must be the solar constant in the proper units. The AT array
allows the user to input the angle (degrees) between the surface normal and
the surface-sun line. The AI array allows the user to input an illumination
factor for each surface which is the ratio from zero to one of the unshaded
portion of the surface. The solar constant (S), AT and AI values may vary
during the transient for both routines. No input surface temperatures are

required. The absorbed heating rates are returned sequentially in the AQ
array, the user may utilize SCALE, BRKARY or BKARAD to distribute the heating
rates to the proper source locations.

RESTRICTIONS:

These routines are independent of the temperature system being used. All of
the array arguments must reference the integer count set by the SINDA pre-
processor and be of the exact-required length. As many calls as desired
may be made but each call must have unique array arguments.

CALLING SEQUENCE: SLRADI(AA(IC),AE(IC),AFA(IC),AT(IC),AI(IC) ,AQ(IC))

or SLRADE(AA(IC),Ac(IC),AFA(IC),AT(IC),AI(IC),AQ(IC))

SUBROUTINE NAME: EFFEMS

PURPOSE:

This subroutine calculates the effective emissivity E between parallel

flat plates by the following equation:

E = 1.0/(1.0/El + 1.0/El - 1.0)

where El and E2 are the emissivities of the two surfaces under consideration.

RESTRICTIONS:

Arguments must be floating point numbers.

CALLING SEQUENCE: EFFEMS(E1,E2,E)

15<A.8-9
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THERMAL RADIATION EXCHANGE

SUBROUTINE NAME: SCRPFA

PURPOSE:

To obtain the script FA value for radiant transfer within an enclosure. The
input arrays are formatted as shown for subroutines IRRADI and IRRADE. The
second data value in the AFA array is used as a final multiplier, if 1.0
the script FA values are returned, if a then script a FA values are returned.
The script FA values are returned in the ASFA array which is formatted
identical to the AFA array and may overlay it.

RESTRICTIONS:

All array arguments must reference the integer count set by the SINDA pre-
processor and all arrays must be exactly the required length.

CALLING SEQUENCE: SCRPFA(AA(IC),AE(IC) ,AFA(IC),ASFA(IC))

NOTE: Subroutine SYMLST(ASFA(IC)+3,ASFA(IC)+l) may be called to list the
matrix values and identify them by row and column number. This routine
and the implicit radiosity routine finalize the half symmetric coefficient
matrix and call on SYMINV(AFA(IC)+3,AFA(IC)+1) to obtain the symmetric
inverse.

153<
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B. THERMAL NETWORK CORRECTION PACKAGE

B.1 Introduction

The thermal network correction package consists of a number
of subroutines, many of which are internally programmed as part
of a larger program subpackage such as STEP which is discussed in
Appendix C. These subpackage programs are not totally integrated
and must be employed in a stepwise procedure. Major subpackages
are denoted Data Comparison and Plotting, Sensitivity Analysis,
and Parameter Correction. Detailed operational procedure from
test data to a corrected network1 and theoretical development2

are reported elsewhere. Major considerations and users instruc-
tions are reported here.

B.2 Theoretical Development

Kalman filtering was chosen over other methods because it
offered a way to solve some of the problems presented by tempera-
ture measurement sparsity, yet retains solution simplicity when
the number of measured temperatures in a region is complete.
Governing equations are presented for the case of temperature
sparsity and for the special condition of complete temperature
measurement.

B.2.1 Sparse Temperature Measurements

Consider the heat balance equation

dTi  Qi(t) n a.. n bJ 4 4

+ E (T. -T.) + La (T. -T. (B-1)d C. , C. I C J 1
1  j=l i j=1 j

i = 1,2,...,n

where: Ti  is the temperature of the nth node

t is the time

ajj is the conductance

Ci  is the capacitance of the ith node

bj is the radiation coefficient

For a thermal model that contains n nodes with'm nodal
temperatures measured, where m < n, the random noise corrupted

1. Ishimoto, T., Gaski, J. D., Fink, L. C., "Final Report, Development
of Digital Computer Program for Thermal Network Correction, Phase II
--Program Development, Phase III--Demonstration/Application,"
September 1970, 11027-6002-RO-000, TRW Systems Group.

2. Ishimoto, T., Pan, H. M., Gaski, J. D., and Stear, E. B., "Final
Report, Development of Digital Computer Program for Thermal Network
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measurement vector, {y*}, is an m by 1 vector whose elements are
given by the m noise corrupted measured temperature. This is
given by

{y*T = (T* T2 T ... T* .. T) (B-2)

where T' = random noise currupted measured temperature for the
ith node, i = 1,2,...,m

Sum of model parameters and isothermal nodes is p. The state
vector is a p by 1 vector whose elements are the n nodal tempera-
tures and the (p-n) model parameters. The (p-n) parameters are
represented by

a b
() ( an) , and

i i i

The state vector is indicated by

T Q a b
(T T2 "' T (B-3)

SC .. C " C.

Relationship between the measurement vector and the qtate vector
is given by the following matirx observation equation:

{y*) = [MIJx} + {W) (B-4)

In equation (B-4) [M] is the m by p measurement matrix given by

I

[1 = 0 (B-5)

and {W} is the m by 1 random measurement noise vector whose elements
are the random noises associated with the m measured temperatures.
This is given by

{wtT = (w1  2 ... w ) (B-6)

Details of the derivation of the Kalman filter may be found
in the cited Reference 2, Page B-1; the following summarizes the
Kalman filter equations whereby the correction of thermal model
parameters can be obtained sequentially.

ly*}) = [M]t {xt + [W t (B-7)

{x}t+&t = [U]t{x t  (B-8)

{} t  {Xa It + [B]t( {Y* t - Yat )  (B-9)

{yat = [M]t{xat (B-10)
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[BIt = [A]t[Ml]tT([Mt[A] t[M T + [t) (-I)

'[J]t= (I - [BI]t[M]t) [A]t  (B-12)

{Xa = [U] {I}t (B-13)
at+At t t

[A]t+At = [U]tnJt[U]tu 'T (B-14)

where {y*}t = random noise corrupted measurement vector
(temperature) obtained at time,t.

{x)t  = value of the state vector (unknown parameters)
at time,t.

{W) = random noises associated with the measured data
obtained at time, t.

{x) = value of the state vector (unknown parameters) at
time, t+At.

{M) t  = measurement matrix evaluated at time, t.

{I} = new estimate of the state vector (unknown para-
meters after processing the measured data obtained

at time, t.

{x a t  a priori estimate of the state vector (unknown
parameters) before processing the measured data

obtained at time, t.

[BI = measurement weighting matrix evaluated at time, t

(the time varying gain).

[A] = E[({x} - {xal)({x - {xa}) T], error covariance

matrix for the a priori estimate state vector.

[J] = E[({x) - {X))({x} - {i:) ], error covariance matrix
for the newly estimated state vector.

[U] = transition matrix.

Given the correction scheme whereby the Kalman filter equations
are used, the following steps are performed:

(1) First obtain an a priori estimate for the state vector {xalt and
the associated error covariance matrix [A]t;

(2) Calculate the time varying gain [B] t using the equation (B-11)
and the first set of measured data;

(3) Obtain new estimate for the state vector, {x}t using equation
(B-9) and the first set of measured data;

(4) Calculate the error covariance matrix, [J]t for the newly
estimated {}t using equation (B-12);

(5) Update the newly estimated state vector, {it with equation (B-13)
to obtain the new a priori estimate at time t+AT and calculate
its associated error covariance matrix using equation (B-14).
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(6) Repeat Steps (2) to (5) using the new a priori estimate for the
state vector and its associated error covariance matrix with the
second set of measured data.

(7) Repeat above until all the measured daca have been processed or
until desirable results* are obtained.

Temperature Dependent Parameters

For temperature dependent parameters, the coefficients are con-
sidered to be of the form

aij = ai. f(Ti,T ) (B-15)

bij = bij g(Ti, j) (B-16)

Only the constant portion of aij and bi. , aij and b., is to be
corrected and the functions f(Ti,Tj) and g(T4,T ) are considered to
be known.

Using equations (B-15) and (B-16) for the aij's and the bij's,
the heat balance equation for node i can be written as,
dT. Q. n a0 .  n b. 4

S= C + ( f (TiT. ) (T-Ti1 )+ E ( . (Ti' j (Tj -T. ) (B-17)
i j=l i j=l i

B.2.2 Complete Temperature Measurements

It was indicated above that if all of the nodes are monitored, a
very large network can be corrected. This is possible because the
governing heat balance equations can be operated singly and timewise
sequentially. The Kalman filter is formulated to take advantage of
this special temperature measurement situation.

The Kalman filtering equations may be formulated by first arranging
the heat balance equation at the ith node such that the known quantities
(hard parameters, temperature, and temperature derivatives, if C is
hard) are on one side of the equation and the k unknown quantities
(soft parameters) are on the other side.

The set of k equations of the ith node plus some random noise
associated with the measurement data will yield the following matrix
equation:

{y'} = [Mi]{x} + [Wi] (B-18)

where {yt} represents an artificial measurement vector at the ith
node composed of hard parameters and temperature data.

* Desirable results are those results whose variance are smaller than
specified values
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[Mi] is the artificial measurement matrix that involves the

.coefficients of these unknown paramters.

{x } is the state vector formed with the unknown model

parameters.

{W.} is the random noise matrix associated with the measure-
Sment data.

If the unknown parameters are considered to be constant, the
updating matrix, [U], is essentially an identity matrix. With {xi},
{y }, [Mi], and [Ui] now formulated, the Kalman filtering method
is completely identified by assuming a priori information for the

unknown parameters.

After the unknown (soft) parameters for node i are determined

the procedure is repeated for the jth node with the exception that
any parameter of the jth node that was corrected with the ith node

solution is set to corrected values and designated as hard for the

jth node.

B.3 Operational Procedure for Correcting a Thermal Network

Operational procedure from test .data to a corrected net-
work is a multi-step process with the interface between steps
requiring special user attention. Some attention was given to
integrate or eliminate some of the interfaces but network size
and the need for flexibility requires direct user participation.
Higher is the degree of automation, less flexible and less

general is the resultant network correction program. The over-
all operational procedure for thermal network correction
recognizes the need for user simplicity but was based upon
flexibility and generality considerations. A flow diagram with
separate program packages and interfaces is shown in Figure B-l;
a description of the operational procedure is reported in
Reference 1.

B.4 Data Comparison and Plotting

Comparison of test and analytical temperatures for the pur-
pose of isolating those that are out-of-tolerance requires
several sub-steps before temperature comparison can begin.
Out-of-tolerance criterion is determined from accuracy assessment
of analytical temperatures; for the latter, a sensitivity
analysis program called STEP offers a way for this assessment.
Discussion of STEP and users instructions are presented in
Appendix C.

Due to the indeterminate amount of data that have to be
processed, the comparison and plotting capability was coded as
two separate subroutines, COMPAR and PLOTMP. These subroutines
are coded in such a manner that they may be called in the same

B-158<
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run or in a batched mode. The actual plotting is done by internal
calls to SC-4060 quick plot subroutines which have identical names
and arguments to the CINDA-3G SC-4060 quick plot subroutines in
use at NASA/MSC. Description and users instructions for COMPAR
and PLOTMP are presented in Table B-1 and Table B-2, respectively.

B.5 Parameter Correction

Parameter correction of a large thermal network with temperature
sparsity requires a means of assessing unobservability, observability,
and the correction of the parameters. Unobservability of a network is
determined as part of the KALFIL subroutine and observability of a
network is pursued with a separate subroutine called KALOBS. The
need for two separate subroutines is a direct result of the two Kalman
filtering formulation. Subroutine KALFIL processes the network
equations simultaneously whereas subroutine KALOBS processes the
network equations singly and sequentially. In general, KALFIL should
yield more accurate corrections than KALOBS. Integration of both
subroutines into a single package would have unduly complicated the
overall thermal network correction package; the user thus must make
a decision based upon rather simple ground rules. If a network
contains totally measured nodes, KALOBS is used unless the number of
nodes plus the number of "soft" parameters total less than 100; for
the latter KALFIL is used. If a network contains a region or regions
with complete temperature measurements, subroutine KALOBS is called
first in order to correct and set hard those "soft" parameters which
are totally observable; then subroutine KALFIL is called for the
remainder of the network. If a network contains only a limited
number of measured temperatures and the measurements are sparsely
distributed, subroutine KALFIL is called.

An important consideration that should be discussed here is the
accuracy of the "soft" parameter correction. The correction is
subject to the observability of the conductors and the accuracy of
the measured temperatures. In some instances, the corrected parameter
values may be in gross error and physically not realizable, such as
a negative conductor, but this should not be particularly surprising
3ince the parameter values merely reflect the accuracy and observa-
bi.ity conditions. On the other hand, the calculated temperatures
with the corrected parameters should correlate quite closely with
the measured temperatures.

B.5.1 Network Correction with Complete Temperature Measurements (KALOBS)

This subroutine is used to correct "soft" parameters that are
contained in a totally observable network or subregions. These
regions are identified as measured nodes surrounded by measured nodes
with the basic smallest totally observable region being a single
measured node surrounded by measured nodes. The heat balance
equations are processed singly and sequentially with the "soft"
parameters set "hard" after correction.

160<
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TABLE B-1

TEMPERATURE-TIME HISTORY COMPARISON SUBROUTINE

SUBROUTINE NAME: C0MIPAR

PURPOSE:

This subroutine compares two time-temperature history matrices
to see if the data sets agree within some specified tolerance. The
user must supply an array of integer node numbers in the corresponding
order of the temperature data. Those temperature sets which are out-
of-tolerance will have the node number set negative in preparation for
plotting of out-of-tolerance temperatures by subroutine PLOTMP.
(Table B-2).

RESTRICTIONS:

The two time-temperature.history matrices must be of equal size and
the node numbers input under the indicator array must be in the same
order as the matrix temperature data.

CALLING SEQUENCE: COMPAR(IA(IC),TL,TTMI(IC),TM2(IC))

Where: IA is the address of the indicator array

TOL is the out-of-tolerance criterion (°F)

TMI is the first time-temperature matrix array*

TM2 is the second time-temperature matrix array*

* Refer to page A.6-1 for matrix format (first column is time)
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TABLE B-2

TEMPERATURE PLOT SUBROUTINE

SUBROUTINE NAME: PLOTMP

PURPOSE:

This subroutine should be used in conjunction /iVth subroutine
COMPAR. The indicator array is searched until a negative node number
is found which indicates an out-of-tolerance condition. The corresponding
temperatures from array T1l and TM2 are then plotted using x and o
plotting symbols, respectively. The actual node number from the
indicator array is printed as a top line heading. The plot produced
requires further processing on the SC-4060.

RESTRICTIONS:

The user should consult Appendix E, Control Cards and Deck Setup,
to check tape designation requirements. Subroutines PLOTIMP selects
the appropriate grid limits and then internally calls upon subroutine
PLOTX2. The user must call upon subroutine PLTND after all plotting
has been completed.

CALLING SEQUENCE: PLOTMP (IA(IC),TMl(IC),TM2(IC))

Where: IA is an indicator array of actual node numbers
preprocessed by subroutine COMPAR

TMI is a time-temperature matrix array

TM2 is a time-temperature matrix array

* Refer to page A.6-1 for matrix format (first column is time)
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For this subroutine theoretically all (less one) of the parameters
associated with a given node may be selected as "soft" and correctable,
the user should keep the number of "soft" parameters to a minimum and
in general it is better not to mix a "soft" capacitance with "soft"
conductances and/or source associated with a given node. User
instructions for KALOBS is presented in Table B-3.

Example of an input for subroutine KALOBS is given in Table B-4.
The thermal model used for illustrative purposes is the five-node
model described in Appendix D. Explanation of the various inputs is
indicated directly on the computer print-out as shown in Table B-4.
The model considered here has complete temperature measurements, 6
soft conductors and a perturbation factor of 50%. It should be
particularly noted in this example that some of the input is for the
generation of simulated temperature data and perturbed parameters.
The input when experimental data are used would be different from
the input shown in the example.

B.5.2 Network Correction with Temperature Sparsity (KALFIL)

This subroutine determines the unobservability of network
elements and sets all unobservable elements as "hard" in the indicator
vector, thereby eliminating them for corrective consideration,
Subregions are identified and dummy pseudo compute sequences formed.
These dummy pseudo compute sequences .are then utilized by subroutine
UMATRX to form the integration matrix utilized in calculating the
B and J matrices. (Refer to paragraph B.2.1) Integration of the
total network is performed by a standard SINDA network integration
subroutine. In this manner the KALFIL parameter correction method
for the condition of temperature sparsity is applied to the subregions
simultaneously as though the rest of the network was totally hard. A
subregion surrounded by unmeasured nodes is less desirable than one
surrounded by measured nodes. The latter isolates the subregion from
outside influences, while.the former is susceptible to error
propagation from other subregions not yet corrected. In order to
hold external influences to a minimum, all nodes outside the subregions
under construction are forced to the measured temperatures, if
available.

The conditions of observability and unobservability as determined
in Reference 2 are listed in Table B-5. In subroutine KALFIL
parameters between unmeasured nodes are automatically set hard (item
6, Table B-5) since these parameters are completely unobservable.
For this subroutine, it is better not to mix a "soft" capacitance with
"soft" conductances and/or source associated with a given node. Users
instructions for KALFIL are presented in Table B-6.

An example of input for subroutine KALFIL is shown in Table B-7,
again using the five-node model. This example contains 4 measured
temperatures and six soft conductors. Explanation of the various
inputs is indicated directly on the computer print-out.
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TABLE B-3

KALMAN NETWORK CORRECTION WITH COMPLETE TEMPERATURE MEASUREMENTS

SUBROUTINE NAME: KALOBS

PURPOSE:

This subroutine uses the Kalman filter method to correct soft
parameters that are contained in totally observable subregions. This
subroutine employs the heat balance equation singly and time wise
sequentially. Such a subregion includes all the conductors into a
measured node when.all the surrounding nodes are also measured. If an
adjoining node has identical temperatures as the node under considera-
tion, correction is not possible. If total measurements are not
available the user should continue the correction procedure by using
the subroutine KALFIL. This routine removes node source and conductor
numbers from the IC and IG arrays for corrected parameters. KALOBS
is called in the execution block.

RESTRICTIONS:

This subroutine requires the long pseudo-compute sequence (LPCS).
The capacitor, source, and conductor indicator arrays must have their
contents in the same input order as the node, source and conductor
data, respectively. All temperatures must be in the Fahrenheit system.

CALLING SEQUENCE: KALOBS(IPNT,IT(IC),IQ(IC),IC(IC),IG(IC),HT,TNP,
QNP,CNP,GNP)

Where: IPNT is an intermediate print indicator: I=O,no;IA0,yes

IT is an array of actual node numbers of measured
temperatures and must be in the same order as the
test temperatures

IQ is an array of actual node numbers of soft sources

IC is an array of actual node numbers of soft capacitors

IG is an array of actual conductor numbers of soft
conductors

HT is a time history matrix of test temperatures, each
row being a time slice with time as the first value

TNP is the temperature noise estimate

QNP is the percent of estimated source error times 0.01

CNP is the percent of estimated capacitor error times 0.01

GNP is the percent of estimated conductor error times 0.01
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TABLE B-4 EXAMPLE OF INPUT FOR SUBROUTINE KALOBS

FIVE-NODE MODEL, 6 SOFT CONDUCTORS

UCO 3THERMAL LPC(
6CO 9 5 mooDE PROBLEM FOR CHECKOUT OF KALpBS SURROUTINE
END

BCD 3NODF DATA

169*9l,214.6olo*3*36*4ol*oRO62*1ollB.|02o6>1.

END

BCD 3SOURCE OATA
SIT j,Ag9,I0
ilT 3 1 A9OoS
END

bC0 3CONDUCTf.i DATA
SIV lilt2,A2,k21 2 l ,4tA25oK22,3t t5 AZS.K23
SIV 4 2,3 A2, ZKZ4s s2 5,A2 5,K25

a 13,t 273Se1I 22F, , 2GEN -9,4toi,O,2,l,.2E-9

-13,1 6E2' -9
GEN -1 '4 z E,3 .1 3, .2E*9

-21 rS,5 2L-q *Z' 2sqo6**2E-9s'23obo69*2E 9
END

BCD 3COINSTANtS DATA

TIMLN0o,2.0,0 TPUTooo1
1=6 NJUMBER OF SOFT PARAMETERS
2=6 * NUMBER OF NUDES
3=0,5 S PERTURBATION FACTOR
21,.2,22,o2o23o*2o2 24,2,2S ,2

8$C 3AHRAY DATA

3,21,61SPACE,126,END s TIME HISTORY MATRIX
SoSPACE#6tEND S SPACE FOR INITIAL TEMPERATURES
90.*,SCt.,1,0SOo,2*,50,END s TIML VARYING Q CURVE, SAOTOOTH
11,ll 2,3,I,5,END s MEASURED TEMPS IN ORDER STORED
IZI#, 23,4,, 6pLND $ NODE NUMBERS FOR PRNTMI
I1,I,'48.12lIs239END s SOFT CONDUCTOR NUmBERS FOR KALOBS
15Is1 '4,8,12,1823F.ND 5 OFT CQNDUCTOR NUMBERS FOR PRNTMI
25r,(.,*7,110', 1*Z SO S VARIABLE CONDUCTIVITY
91SPACE, 6 .ENtD S SP'ACE FOR ORIGINAL PARAMETERS
92,PACE,6,LND S SPACE FJR p4RTURBED PARAMETERS
93tsPACLo6,tND S SPACE FOR CORRECTED PARAMETERS
94,SPACEos,LND SPACE FOR ORIGINAL TEMPERATURES
.95~PACLs6,ENDO SPACE FOR PERTuRBED TEMPERATURES
96,SPACL,6,LND S SPACE FOR CORRECTED TEMPERATURES

97oSPACE96,END S SPACE FOR PERCENTAGE OFF
98

BCD q NOOD NUMBER
eCO 4 ORIGIlAL RESULIS
6CU 4 PFRTURIED RESULTS
bCD 4 CORRECTED RESULTS

END
99
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TABLE B-4 (Cont.)

BCD 4 ORIGIJAL VALUES
BCD q PEPTUR:Er) VALUES

BCU 9 CORRECTED VALUES
BCD q CONDUCTOR NUMBER
BCD q PERCENTAGE OFF

END
END
BCD 3EXECUTION

DIMENSION x(5'00)
NDIM a 5000
NTH p 0

TPRINT
GPRINT
BLDARY(A91,KZIDK24,G8tGI2,GI8,G23) S SAVE ORIG PARAMETERS
SHFTV(STIA5) S SAVE INITIAL TEMPERATURES
CNFRDL S SIMULATE TEST DATA
SHFTV(6T,A9'4) S SAVE ORIGINAL RESULTS

TIMEO = 0.0

SHFTV(5 ASTI) s RESET I ITI A L TEMPERATURES
THE FOLLOWING SCALE CARD PERTURBS SOFT G FACTORS OR VALUES

SCALE(K 3 ,K21,K21,K2oK24tG8 G 12Gl 22pG18,GBpG23 9,23)
BLDARY(AV2K21IK24,GaBoGl2,G8,G23) S SAVE PERTURBED PARAMS
CNFROL S OBTAIN PERTURRED TEMPERATURES
SHFTV(69TI,A95) S SAVE pERYURBED RESULTS

TIMEO = 0.0
SHFTV(SA5,Tl) S RESET INITIAL TEMPERATURES
KALOBS(UAllo0 eL,A4,A3,0,1Ot)OOOeO,1o)
BLDARY(A93,K21oK24,GasGi2GIl8,G33) S SAVE CORRECTED PARAMS
SUBARY(KIA93A91A97) $ OBTAIN COBRECTIPN DIFFERENCE
DIVARY(KIA97,A9IA97) S CONVERT TO PERCENT
ARYMPY(KI A97*IOO*.CA97)
PRNTMI(KIA9Y9+*I3AI.~51A99+IjA9lsA99t5,A92,A99+9,A93

A9 9,I7tA97) 5 PRINT THE CONDUCTOR DATA
SHFTV(SAS.Tl) S RESET INJTIAL TEMPERATURES

TIMEO = 0.0
CNFRDL 5 OBTAIN CORRECTED TEMPERATURES
SHFTV(6&TI,A96) 5 SAVE CORRECTED RESULTS
SUBARY(K2,A96A94sA97) S OBTAIN CORRECTION DIFFERENCE
ARYADD(KZAAY4,60*OAY94) s CONVERT Tq RANKINE
DIVARy(K2,A97,A94A97) S CONVERT TO RERCENTi RANKINE BASE
ARYSUB(K2ZA94#s60*OsA94) S CONVERT TO DEGREES F
ARYFIPY(K2,A97100, 0,A?7)
PRNTMI(K2,A9gR+1,Al2*IA9.+SA94qA98+g+A9s5A98.+l3A96

A99+17A97) S PRINT TEMPERATURE DATA

BCO 3VARIABLES i
TIMEM 6 TIMEO
END
BCD 3VARIABLES 2
END
BCD 3OUTPUT CALLS

TPRINT

TESTMP(JTEST,5,TI1 TIMEN.A3)) ,STORE ANALYTICAL TEMPERATURES
END
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TABLE B-5
SUMMARY OF OBSERVABILITY SITUATIONS AND CORRECTIBILITY CONDITIONS

(From Table 2-7, Reference 2)
SITUATIONS OBSERVABILITY ACCURACY

1. Complete temperature measurements All parameters are observable General: Comments discussed
below apply

2. An unmeasured node surrounded by Parameters to unmeasured node General: Comments discussed
measured nodes are observable below apply

3. An unmeasured node surrounded by Parameters from measured nodes to General: Comments discussed
measured nodes and one boundary the unmeasured node are observable below apply
node Parameter from boundary node to Specific: The correction

unmeasured node is unobservable accuracy is very sensitive to the
Parameters from the measured node value of the parameter which is
are observable unobservable and thus not correctible

4. A measured node surrounded by Parameters from the measured node General: Comments discussed
unmeasured nodes are observable below apply

Specific: Even with exact initial
Wtemperatures of the unmeasured nodes,

the convergence may not be the exact
parameter values

5. A measured node surrounded by Parameters from the measured nodes The comment for situation 4 applies
unmeasured nodes and one boundary are observable The value of the parameter from the

A node measured node to the boundary node
converges to the true value

6. Two adjacent unmeasured nodes Parameters between unmeasured nodes Parameters are not correctible
are not observable

7. Parallel coupling Parallel linear coupling is not Parallel linear conductors cannot be
individually observable individually corrected a
Parallel linear and radiation cou- Parallel linear and radiation coupling 6
pling are individually observable are individually correctible 0

General Comment: The accuracy of the parameter correction is dependent upon the accuracy of the experimental
temperature data; a quantitative measure is not known at this time. For an unmeasured node t
the initial temperature must be known accurately; the accuracy of the parameter values are
quite sensitive to the initial temperature value.
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TABLE B-6

KALMAN NETWORK CORRECTION WITH SPARSE TEMPERATURE MEASUREMENTS

SUBROUTINE NAME: KALFIL

PURPOSE:

This subroutine performs network parameter correction by the Kalman
filter method. In general it should be applied to the model being corrected
after KALOBS has been applied. This routine must be called upon in the
Variables 2 block with CNFRDL in the execution block. It performs an
initial pass in order to reduce (set hard) those network elements which
are uncorrectable due to observability criteria (unobservable). It then
makes a second pass in order to remove from the calculation procedure
measured nodes which do not contribute to the solution. It then sets up
several square matrices of order N, where N is the number of remaining
measured temperatures and soft parameters, and simultaneously solves the
Kalman filter set of equations. All corrected parameters are set hard
and the corrected values placed into the appropriate network locations.
Immediately after the correction process, analytical check runs can be
performed.

RESTRICTIONS:

The long pseudo-compute sequence (LPCS) is required. This subroutine
must be called within the Variables 2 block by the CNFRDL execution
subroutine. Noise or error estimates of zero are not allowed.

CALLING SEQUENCE: KALFIL(I,IT(IC),IC(IC) ,IQ(IC),IG(IC) ,AT(IC) ,AJ(IC))

Where: I is an indicator for intermediate printout: I=O,no;I#O,yes

IT is an array of actual integer node numbers of the
measured temperatures and corresponding to the AT matrix

IC is an array of actual integer node numbers of soft
capacitors and must be in the same order as the node
data input

IQ is an array of actual integer numbers of soft sources and
must be in the same order as the source data input

IG is an array of actual integer conductor numbers of soft
conductors; must be in the same order as the conductor
data input

AT is a matrix of test temperature history with the number
of rows being the number of time points, the first column
representing time and the second column representing test
temperatures in the same order as the IT array

AJ is an array of noise and error estimate squared for each
soft parameter and must be in order with IT, IC, IQ
and IG
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TABLE B-7 EXAMPLE OF INPUT FOR SUBROUTINE KALFIL
FIVE-NODE MODEL, 4 MEASURED TEMPERATURES, 6 SOFT CONDUCTORS

COD 3THERMAL LPCS
(iCD 9 5 ~O) " Pf.tBLLM FOR CHECKOUT wOF KALFIL SUi OU1 11E:
f N)

PCD 31J.O-E I)ATIA
I o 9 ,1. *1.2, 1I 6*16 * I ,3,36.9 ' , ,9 62 |Iit,1 5.102.6,t,

bCD 3SOURCE DATA

SIT I,A9,lo0

-cD 3CONpUCTOR tiATA
S1 Itl.,2,A2i, I 2, l ,d4,A25,K22i,3ol StA25,K23
biV 42,3, AZ'- , sqki .2b A2,,K25

6s3i,2e72,,s,.2 ,8 5, Se2
GEN -9sB4 ileCi, .. 2E-9

-13,1 6Po2-9
GEN - "'4 1'2 SC, 3, 1 ,-2 , '4i, .a9. , .2E-9

-Ii*, 2E-9,- 919 3 b 2--9,-20 3 66 2E,9
"21,s4 bI2E- 9 22 o s6 .ZE- , *23s e o 2L 9

iL0 3CfNSJANTS sATA
I I E NP * ~. i T P- UT , :
1 = 6, , iV itk OF S'FT PARAM1TERS
2 = 6  : O:ER F :"DtES
3="0e ,  $ I:ER'TU )ATIO i FACTOR
21se2.22 . ps23so2s21 2,, 2bs,2

C.D 3AHRAY LATA
2 1,1 ,Odol [C ,Cl .O ,O.lool $S NOISE ESTIMATES

DO,- ),0rb l- o C ,1 . E9pLIE- 9 GaIE-I9,E-; Ekh EST S W RD
3s21SPACE,IC'rEhD s fIML HISTORY MATRIX

bSrePACEph 6,eL $ SPACE FOR INITIAL TE,.PLEATURES
9%O *t*.*s-e1 I5LC*,2, 95 ,ENOJ s TIME VARYING Q CURVE, SAVTO.)Th
I)fI,l,3,,LND S Nr. ASURL0) TEMP NONUES FOR KALFIL
12 Is2, 3 sg5,6 OEND S NOOL NUMBERS FOR PraiTMI
I 1'.,649 12,18,23FND s SOFT CPNDUCTOR NUME:RS FOR KALFIL
15tI '4v1621 8t23,EN0D SOFT CONDUCTOR NUMbERS FOR PKNTMI
25sIuO,7, IU000Csl25oE0D y ARIABLE CONDUCTIVITY
YiSPACE,6,EN SPACE FOR ORIGINAL PARAVETERS
92iSPACEsb.LND 5 SPACE FOR PERTURELD PARAMETERS
93sSPACL 6l-ND S'ACE FOR CORRECTED PARAMETERS
9QSPACE6,1.ND S SPACE FOR ORIGINAL TEMPERATURES

95,SPACE6,ND S SPACE FOR PERTURBED TEMPERATURES

96#SPACLE6,END S Sf'ACL FOR CORRECTED TLMPEFRATURES
97*SPACL6,vND S SPACE FOR PERCENTAGE OFF
98

vCD 4 NODE NUMUER
8CU 4 ORIGINAL RESULTS
6C) 4 PERTUR8F; NELSULTI
pCD CO(iRRCTEo RESULfS

ENO
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TABLE B-7 (Cant.)

bCD 4~ ORIGINAL A~E.
EbCD 4 PERTUR3Ei~ VALUE"S
BCD 4 CORRELCTED VALUF'S
BC D 4 C ON DU C 7 0RN m B E FbCD 14 PLHCENTAGC OP

ENO

BCD) 3EXLCUTIOt.;
DIHEt4SIU14 X(b(.cj('J
NL)IM 56SOU
NTH 0

y PR I N T
GPR I tT
8LDARY(A91,K21.kLI,(,tGIZ,GI8,6z3) 5 SAVE nfThIG PARAMEULRS
S'FTV(5vTI,A6) 1 S'AVj INJI1JAL TIMlPE.NATU,.'k S
CNFRVL $-SIMULA~TE TFST UATA
SHFTV(6,TtA9'i) s $AvE ORIGINAL fkE~tLTS

TIMEO c0.0)
SmFTV(5vAsTi) S RLSLT INITIAL 7EMPER<A1IIFS

THE.L FOLLONIN6~ SC ALL CARD Pi~8TURc3S S&FT G F AC To~is r VALuLS

BLAYA2KlK',n~~~6G3 $ 53AijE HiklUSLL PARAM.,
rNVP<DL $ 08li-IrN PERTuktjEc, TE.AP HATURf-)
SHFIV,6TI,Agt,) s. !iAv. PERTuRPfEU KLE5ULTS

TIMEO anoU
SlFTV(!ipAs_,yjJ S kt.SET INITIAL TEMPERAT~kFS.

I TEST a
* CNFRDL S ENVRN CORKE(TION RUN

BLOAY(A3,K~oK2,68G12,IB,23)$ SAVE CCRkECIEI FARAH:,
SUf3ARY(K,A93,A 9 1,A97I S OBTAIN CORkECjIJoN DIFFLkEriCL
DIVARy(KIA97,AyIA97l S CONVERT4 To ILICENT
ARYMPY(F1A97IOcj,jA9,)
pRNTml(KlAYi9+I3,AlS,1,A994IA9lBA?9+SIA

9 2 ,A9 9,YA 9 3
A99,17,A97) -6 PRINT THE CONDUCTUR CATA

SHVTV(SvAS,T1 ) S RfS.T INITIAL TLMPEKATUKLS
I TLS T a 0
TIMEO a [).C

CNFRU. S OBTAIN CORR~ECTED TEMPERATuRrs
SHFrV(6vTJ.Aq6) S SAvE CORRECTED RESULT5
SUBARY(KZA96 sAqa4,A 9 7 ) S OBTAIN CORRECTIO14 DIHFEKLNCE
AIRYAUD(K29A94s4 6 0*.,A 4 ') s cUo4VLkT TQ RANKINE
DIVARY(Kd,A97,Aq4,A97i s CONVERT Tu PERCENT, RANKINL bASh
ARYsU9(K2,A,.v 6 0-jl'?'4 % cO,~vLRT TO DLGRELS F
ARYmPYf KZA97* I o~oeA97I
pRNTMI(KZ,A98*I.AI2+I ,A9R+bgA9qsA9s.9-A9AS.g13,A

9 6
A99+379A 9 7) S PRINT TLMPERATURE DATA'

END
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TABLE B-7 (Cont.)

BCD 3VARIABLES 1
END

BCO 3VARIABLES 2

IF(ITESToEQoO) RETURN
KALFIL(0sAlIOo,0AogAq,3A2)

END

BCD 3OUTPUT CALLS
IF(TIMEOEQGOoo) CALL VARBLZ

TPRINT
TESTMP(JTEST,eTTIMENA3) S STORE ANALYTICAL TEMPERATURES

END

171<

B-18



nEDONO BEACH. CALIFORNIA

B.5.3 Time-Temperature History Matrix (TESTMP)

Subroutine TESTMP which is part of the parameter correction
package aids the user in forming a time-temperature history matrix.
Users instructions are given in Table B-8.

B.6 Sensitivity Analysis

Accuracy bounds of the analytical temperature may be generated
by the use of the sensitivity-temperature error program (STEP).
Theoretical development of STEP and brief users instructions are
presented in Appendix C. For details on the overall program
instructions, the reader should refer to Reference 3. STEP provides
a means of generating temperature uncertainty due to parameter
uncertainties and a means of assessing the relative "hardness" of
"softness" of a parameter with respect to a given temperature.

B-19.
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TABLE B-8

SUBROUTINE NAME: TESTMP

PURPOSE:

This subroutine aids the user in forming a time-temperature
history matrix.

RESTRICTIONS:

See below.

CALLING SEQUENCE: TESTMP (I,J,AT(DV),X,AM(IC)

Where: I is always a zero integer

J is the number of values to be stored from AT

AT is the start of an array of values to be stored
in AM

X is generally TIMEN and is always stored ahead of AT

AM is a matrix array which must have J+l columns

NOTE:

This subroutine is generally called upon in the Output Calls
block. Each time it is called I is updated by one and another row
added to the AM matrix. When AM is full its operation ceases.

17B-20
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C. STEP (Sensitivity Temperature Error Program)

C.1 Introduction

Subroutine STEP (Sensitivity-Temperature Error-Program) generates

static sensitivity coefficients that may be used to assess the rela-

tive parameter effects on a specified temperature or to assess the

uncertainty of a given temperature. Theoretical development is

reported elsewhere,*but briefly STEP is based upon a derivative

operation on the steady state heat balance equations.

p p
Qi =  a. (Ti - T ) + b.. (T 4 -T 4 ) (C-l)

j=l i j  i  j=l ij

i = 1,2, .. , n

where: Qi is the net heat input to the ith node

aij is coefficient for conduction and/or convection

bij is the coefficient for radiation exchange

p is the sum of n variable and p-n fixed temperatures

The derivative operation is conducted in terms of Q., a.., b..,

and T. (j> n) and is expressed in a matrix form; the solution of

matril equations yields the sensitivity coefficients

DT.

S, for k =  , n (C-2)
aak

2 = k+l, .. , p

Ti , for i , . . ,n (C-3)

k k = 1,.. , n

£ = k+l, . . , p

3T.

- , for i = , . . , n (C-4)

k=1, . . , n

£ = k+l, . . , p

aT
, for i = 1, . . , n (C-5)

k=, . . , n

T
, for i = 1, . . , n (C-6)

3T
k = n+l, . . , p

* Ishimoto, T. and Bevans, J. T., "Temperature Variance in Spacecraft Thermal

Analysis," J. of Spacecraft, Vol. 3, No. 11, pp 1372-1376, November 
1968.
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The sensitivity coefficients indicated by equations C-2 through
C-6 are employed to generate temperature deviation expressions.

Random Temperature Deviation

The temperature deviation in the random sense, (ATi)r may be
expressed as:

(Ti n Ti  2 p i(ATi) r - AQ)2 + E
k=1 aQk k k=n+l T k k

n p T 1/2+ A i2 + 2
(b- Aa) + 1/2k=1 a=k+1 lak ka abkk kk

Linear Algebraic Temperature Deviation (C-7)

If the parameter perturbations are deterministic, then the
temperature variations should be based upon the algebraic sum of the
individual parameter perturbation effects. If (ATi) represents the
linear algebraic temperature deviation, the expression is written as:

n Ti  p IT
E = AQ + E AT

a k=l k q  k=n+1 Tk

n .p IT aT
+ E + ( Aa + Ab ) (C-8)

k=l £=k+l a ak k abkk k

i = 1, 2, . . , n

Linear Absolute Temperature Deviation

If a worst-case temperature deviation is desired, the partial
derivatives and the individual parameter perturbations are evaluated
in an "absolute" sense. If (AT) a represents the linear absolute
temperature deviation, the expression is written as:

n (T p IT
(ATi) ab Q Qk + E - ATkiab k=l I k I k=n+l k

(c-9)
n p aT aT

+ E i Aa + 5 Ab
k=1 £=k+1 aI kt d b ki

S 1, 2, . ., n

175<-2
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C.2 STEP User's Directions

C.2.1 SUBROUTINE NAME: STEP

C.2.2 PURPOSE

C.2.2.1 For generating static sensitivity coefficients with respect to

ak£, bk£' Qk' and Tk (for boundary nodes).

C.2.2.2 For generating temperature deviation in the root mean square
sense, in the algebraic sum sense, and in the absolute value
sense.

C.2.3 RESTRICTIONS

C.2.3.1 CINDSL must be called before STEP is called since the long pseudo
compute sequence and the arrays containing temperatures, con-
ductances, and heating rates are utilized.

C.2.3.2 Parallel linear or parallel radiation conductors are not permitted.

C.2.3.3 Al and A2 must be positive arrays.

C.2.3.4 The maximum number of nodes (diffusion plus arithmetic) that can
be accommodated is approximately 200.

C.2.4 CALLING SEQUENCE

C.2.4.1 STEP(Al(IC),A2(IC))

where: Al(IC) is the array number for print specifications

A2(IC) is the array number for variance specifications

C.2.4.2 Format, Al and A2

IC,PC,Op,Op,...,Op,PC,Op,...,END

where: IC is the array number

PC is a parameter code (Refer to Table C-l)

Op is an option (for Al, refer to Table C-2; for A2
refer to Table C-3).

C.2.5 NOTES

C.2.5.1 This subroutine requires N2 + P locations of dynamic storage.
N is the sum of diffusion and arithmetic nodes (non boundary
nodes) and P is the total number of nodes (diffusion plus
boundary nodes).

C.2.5.2 In Table C0-2, for the option designated by NODE, approximately
100 node numbers may be specified.

176<
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C.2.5.3 In Table C-3, approximately 35 individual variances may be
specified, not including those generated under option ALL.

C.2.5.4 Based upon a number of models ranging from 30 to 164 nodes, the
solution time can be estimated in a very approximate sense by,

Solution time (minutes) = 1/2 ( n 2
30

where n is the number of nodes (diffusion plus arithmetic)

C.2.6 ILLUSTRATIVE STEP INPUT

The STEP input itself is illustrated directly below, but it should
be noted that STEP requires SINDA input considerations. The
combined STEP-SINDA requirements are illustrated in a step by
step fashion in Table C-4.

C.2.6.1 Array Al 1,A,LIST,ALL

B,PURE,ALGORD,NODE,1,4

Q,ABSORD,NODE,2,3

CONT,ALL,PURE,DELTA
DELTAT,END

C.2.6.2 Array A2 2,A,ALL,.1,B,ALL,.l,3,4,.05

Q,ALL,.08,2,.1,4,.1,CONT,ALL,.05,END

C.2.6.3 Note that the node numbers specified are actual, not relative

numbers.

C.2.7 FLOW DIAGRAM

A flow diagram of the major logic for the STEP subroutine is
presented in Figure C-l.

177<
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TABLE C-i

PARAMETER

CODE PARAMETER

A Linear conductors

B Radiation conductors

Q Source terms (heating rates)

CONT Constant temperatures

DELTAT This is not a parameter, but rather a signal
to the program to calculate and print the three
types of deviation. Use in array Al only.
Options in Table C-2 do not apply.

TABLE C-2

OPTIONS EXPLANATION OF OPTIONS

LIST The parameters and variance printed.

ALL All sensitivity coefficients multiplied by
the parameter variance are printed.

PURE Sensitivity coefficients (not multiplied by
parameter variance) are printed.

DELTA Sensitivity coefficients multiplied by para-
meter variance are printed; this option need
be used only in conjunction with option PURE.

PURE, DELTA Both outputs under PURE and DELTA are printed.

ALGORD Each set of output called by ALL or PURE is
arranged by the magnitude of algebraic
values from the largest to the smallest.

ABSORD Each set of output called by ALL or PURE is
arranged by the magnitude of absolute values
from the largest to the smallest.

MULT,n Output as called by ALL or PURE is limited by
the print limiting multiplier, n. The
sensitivity coefficient, dT, is not printed if

dP

dT dT
dP dP max

NODE,il,i 2,... The sensitivity coefficients for the speci-
fied nodes (il,i2,...) are printed.
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TABLE C-3

OPTIONS EXPLANATION OF OPTIONS

ALL,n,il,ml,i ,m2,..,ik'mk This option applies to parameter codes
Q and CONT only. The variance will be
computed from the relationship,

variance of parameters = n (value of
parameter)

unless exceptions denoted by

iI , ml' 12, m2'" ik - mk

are specified, ik is the node number and
mk is the factor defined in the same
manner as n.

ALL,n,il,j1 ,ml,... This option applies to parameter codes
A and B only. It is similar to the
option above except that the user must
supply the adjoining node numbers
(ik,'k) for the conductors.

C-6



TABLE C-4 ILLUSTRATION OF COMBINED SINDA-STEP INPUT

ITEM INPUT COMMENTS

(1) BCD 3THERMAL LPCS

(2) BCD 9 TITLE Optional

(3) END

(4) BCD 3NODE DATA (Refer to Section 4.2.2)

(4.1) N#, Ti, C N# is the actual node number
Nodes with a capacity value are identified as diffusion nodes.

S (4.2) N#, Ti, -1 -1 means arithmetic node

(4.3) -N#, Ti, O The minus sign in front of N# means boundary node.
0 is a convenient number to use as a space holder in core

(do not leave blank)

(5) END Note: A table relating the actual node number to the
relative node number will be automatically printed.

(6) BCD 3CONDUCTOR DATA (Refer to Section 4.2.4)

(6.1) G#, NA, NB, G G# is the relative conductor number.
G is the conductor value between adjoining node number
NA & NB

(6.2) -G#, NA, NB, G The minus sign in front of G# means radiation coupling.
G means the radiation coefficient value. 0o

Note: A table relating the actual conductor number to the 0
relative conductor number will be automatically printed. M

(7) END I
>b
03
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ITEM INPUT COMIENTS

(8) BCD 3CONSTANTS DATA (Refer to Section 4.2.5)

(8.1) NLOOP,N1 ,DRLXCA,N2 ,ARLXCA,N3 ,DAMPA,N4 , NLOOP means the number of iterations; typically N1 = 200to 1000.
DAMPD,N to 1000.

5 DRLXCA means diffusion nodes relaxation criterion allowed
(convergence criterion for diffusion nodes);
typically, N2 = .001 to .01.

DAkPA means damping for arithmetic nodes; typically, N4 = .7
but for radiation dominated problems, N4 may be smaller
than .001.

DAMPD means damping for diffusion nodes; typically, same as
DAMPA.

Note: Tnew = (1 - N4 ) Tol d + N4 Tnew
(8.2) Ki , N1 , K2, N2 ,..., Kn, Nn Kn represents a number used in conjunction with BCD 3

variables, which is discussed below (Item 14).
Nn represents heating values.

(9) END

( (10) BCD 3ARRAY DATA The array data contain the input data for the sensitivity
coefficients of each parameter category denoted as

A A, B, Q, or CONT. The input designations and explanation:
are presented in Tables C-1, C-2, and C-3.

To illustrate the options that are offered, the STEP input
example of Section C.2.6 will be presented and discussed.

(10.1) 1, A, LIST, ALL 1 means array 1. A means linear conductors. LIST means
that the A parameters and variance will be printed.
ALL means that all sensitivity coefficients, in terms of
A, multiplied by the parameter variance will be printed.

or
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ITEM INPUT COMMENTS

(10.11) B, PURE, ALGORD, 1, 4 B means radiation conductors. PURE, ALGORD, NODE, 1, 4 means
that the sensitivity coefficients in terms of B, but not
multiplied by the variance, will be printed for nodes 1 and
4 only and will be arranged from the largest to the small-
est in accordance with the algebraic values.

Note: If all of the sensitivity coefficients were desired,
the input would read: B, PURE, ALL, ALGORD.

(10.12) Q, ABSORD NODE, 2,.3 Q means heating rates. ABSORD, NODE, 2, 3 means that the
sensitivity coefficients (multiplied by the variance) of
nodes 2 and 3 will be printed and arranged from the largest
to the smallest in accordance with the absolute values.

(10.13) CONT, ALL, PURE, DELTA CONT, ALL, PURE, DELTA means that both of the outputs, as
called by options PURE and DELTA, will be printed in terms
of boundary temperatures, CONT.

* (10.14) DELTAT, END DELTAT means that the three types of temperature deviation
will be calculated and printed. END means the end of data.

(10.2) 2, A, ALL, .1, B, ALL, .1, 3, 4, .05, This input means that all variance of A is equal to .1A, all
(5 variance of B is .1B except for B between nodes 3 and 4,

(10.21) Q, ALL, .0, 2, .1, 4, .1, CNT which is equal to .05B, all variance of Q is equal to
ALL, .05, END .08Q, except for node 2, which is equal to .1Q and node 4

which is equal to .1Q, and all variance of CONT (boundary
temperatures) which is equal to .05CONT.

(11) END 0

0



ITEM INPUT COMMENTS

(12) BCD 3EXECUTION

(13) DIMENSION X(Nc)
(13.1) NTH=O

(13.2) NDIM = Nc  Dimension X(N ) represents the amount of core storage requiredThe number N can be estimated from A.5.1, Nc = N2 + P. N
is the sum of diffusion and arithmetic nodes (non-boundary
nodes) and P is the total number of nodes including
boundary nodes.

NTH=O is a pointer.
(13.3) ARYMPY (NR, GN1 , a, GN1) ARYMPY meas. aray multiplier; NR is the total number of

radiation conductions starting from conductor number GN1;
a = .1714x10-8 .

(13.4) CINDSL CINDSL is a steady state netowrk solution subroutine.
(13.5) STEP (Al, A2) Calling sequence for STEP.

(14) END

(15) BCD 3 VARIABLES 1 BCD 3VARIABLES 1 is used in conjunction with Item (8.2).
STFSEP (K2,Q2,Q13) STFSEP literally means stuff separately; this means that the

heating rate Q, on node 1 has the value N1 of item (8.2).
Nodes 2 and 13 have the heating values N2 of item (8.1),
and so. forth.

(16) END o

(17) BCD 3VARIABLES 2 I

(18) END

(19) BCD 30UTPUT CALLS

(19.1) TPRINT

END
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STE

SETUP CALCULATION FLAGS

FROM PRINT ARRAY

SETUP AND INVERT

THE BETA MATRIX

WRITE BETA INVERSE

ON DRUM, BY ROWS

START LOOP TO CO :PUTE
PARAMETER DERIVATIVES'

I= 1

READ THE ITH ROW OF
BETA INVERSE FROM DRUM

FI /GU RYES COMPUTE DERIVATIVES; SU

i YC-l AND/OR PRINT AS REQUESTED

T/k AND/R PRINT AS REQUESTED

N/ AND/OR PRINT AS REQUESTED

aTi /b YES COMPUTE DERIVATIVES; SUM

SkAND/OR PRINT AS REQUESTED

I=N I=I+i

YESETR ENote: N = number of
Nvariable tempera-

ture nodes.

FIGURE C-1. FLOW DIAGRAM OF MAJOR LOGIC
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D. EXAMPLE OF SINDA USERS INSTRUCTIONS

D.1 Introduction

Appendix B provided instructions on the use of the various

subroutines available in the thermal network correction package

and Appendix C provided detailed input procedures on the sensitiv-

ity temperature error program (STEP) for the generation of thermal

sensitivity coefficients and temperature deviations. Since these

instructions were tailored for specific subroutines, many of the

options available on SINDA were not used. As a result additional

user explanations are presented here.

D.2 Physical System and Mathematical Model

D.2.1 Physical System

The physical system is a hollow "thin-shelled" cube with one

face open to space as shown in Figure D-1 (a). A variable external

heat load is impressed on surfaces 1 and 3.

D.2.2 Mathematical Model

The five-node mathematical model has been generated to

describe the physical system in its environment. The heat load on

surfaces 1 and 3 as shown in Figure D-1 (c) is depicted as a saw-

tooth and several of the conductive couplings are considered to be

temperature dependent with a functional form as shown in Figure

D-1 (d). Other interconnections and values are shown in Table D-1.

D.2.3 Objective

The transient temperature response of each of the five nodes

is desired.

D.3 Users Instructions

Among the numerous transient network subroutines (Appendix A.2),

the user must decide upon a particular numerical integration scheme.

For this example, the explicit forward differencing method

CNFRDL (A.2.5) with the long pseudo compute sequence (LPCS) will

be used. Step-by-step users procedure for this illustrative

example follows. The computer listing for this problem is found

on pages D-7 through D-9.

D.3.1 Title Block (Refer to Section 4.2.1)

(Col) 8 12

BCD 3THERMAL LPCS
BCD 9 5 NODE SAMPLE PROBLEM FOR SINDA

END

Comment: Subroutine CNFRDL requires LPCS.
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D.3.2 Node Data (Refer to Section 4.2.2)

(Col) 8 12

BCD 3NODE DATA
1,64.9,1.,2,114.6,1.,3,36.4,1.,4,62.1,1.,5,102.6,1.
-6,-460.,0.

END

Comment: Node number, initial temperature, and capaci-
tance; thus 1,64.9,1. means: node number, 1; initial
temperature, 64.90 F; and capacitance, 1. Btu/OF. Minus
sign in front of node number 6 means boundary node. A
dictionary relting relative node number ot the actual
node number is given on the computer listing, Page D-7.

D.3.3 Source Data (Refer to Section 4.2.3)

The source data may be inputted in the Source Data Block or in the
Variables 1 Operations Block. In this example the Variables 1
Operations Block is employed. In the event the Source Data Block
was to be used, the input would require the SIT option for nodes
1 and 3.

D.3.4 Conductor Data (Refer to Section 4.2.4)

(Col) 8 12

BCD 3CONDUCTOR DATA
SIV 1,1,2,A25,K21,2,1,4,A25,K22,3,1,5,A25,23
SIV 4,2,3,A25,K24,5,2,5,A25,K25

6,3,4,.2,7,3,5,.2,8,5,5,.2
GEN -9 ,4,1,1,0,2,1,.2E-9

-13,1,6,.2E-9
GEN -14 ,4,1,2,0,3,1,.2E-9,1.,l.,1.

-18,3,4,.2E-9,-19,3,5,.2E-9,-20,3,6,.2E-9
-21,4,5,.2E-9,-22,4,6,.2F-9,-23,5,6,.2E-9

END

Comment: SIV option (refer to Page 4-15)allows linear
interpolation of a temperature varying property; input
1,1,2,A25,K21 means: conductor,l; between nodes 1 and 2;
temperature varying values in Array 25; multiplied by
constant in address K21. If the conductor is a constant
a blank code is used; thus, 6,3,4,.2: means.conductor 6;
between nodes 3 and 4; with value .2.

GEN option (refer to Page 4-9) allows the user to gener-
ate a sequence of conductors; thus -9 ,4 ,1,l,0,2,1,.2E-9
means: starting with conductor number 9 (minus indicates
radiation coefficient), four conductors, 9,10,11, and 12,
between nodes 1 & 2, 1 & 3, 1 & 4, and 1 & 5, respectively
with a value of .2E-9 will be generated.

A dictionary relating relative conductor number to actual
conductor number is given on the computer listing,
page D-7.
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D.3.5 Constants Data (Refer to Section 4.2.5)

(Col) 8 12

BCD 3CONSTANTS DATA
TIMEND,2.0,OUTPUT,0.1
21,.2,22,.2,23,.2,25,.2,25,.2

END

Comment: Control constants are listed in Section 4.2.5.2;
TIMEND,2.0 means that the stop time for the transient
analysis is 2.0 (hrs). OUTPUT,O.1 means that the interval
for activating OUTPUT CALLS is 0.1.

The numbers 21,.l mean constants address 21 (this is con-
cerned with the conductor data D.3.3) with a value of 0.1.

D.3.6 Array Data (Refer to Section 4.2.6)

(Col) 8 12

BCD 3ARRAY DATA
9,O.,50.,1.,150.,2.,50.,END $TIME VARYING Q CURVE,SAWTOOTH
25,0.0,0.75,100.,1.25,END $VARIABLE CONDUCTIVITY

END

Comment: Heat input at three different time points (0.,
1., & 2.) are stored in array 9. At points between the
data, a linear interpolation is used. Array 25 contains
the thermal conductivity value at two different temperature
points, O0F and 1000F.

D.3.7 Execution Operations (Refer to Section 4.2.7.2)

(Col) 8 12

BCD 3EXECUTION
DIMENSION X(5000)
NDIM = 5000
NTH = 0

CNFRDL
END

Comment: 5000 represents the working location. CNFRDL
is the explicit forward differencing subroutine (Appendix
A.2.5).

D.3.8 Variables 1 Operations (Refer to Section 4.2.7.3)

(Col) 8 12

BCD 3VARIABLES 1
DlDEG1(TIMEN,A9,Q1) $ TIME VARYING Q ON NODE 1
MLTPLY(Q1,0.5,Q3) $ VARIABLE Q ON NODE 3

END

Comment: DlDEG1 is the single variable linear interpola-
tion subroutine (Page A.4-4).
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D.3.9 Variables 2 Operations (Refer to Section 4.2.7.4)

(Col) 8 12

BCD 3VARIABLES 2
END

Comment: No variables 2 operations required.

D.3.10 Output Calls (Refer to Section 4.2.7.5)

(Col) 8 12

BCD 30UTPUT CALLS
TPRI T

END

Comment: TPRINT is the output call for all nodal
temperatures (Page A.7.3).

D.4 Computer Listing

The computer listing for this five-node example is found on
Pages D-7 through D-9.
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* 6 (Space)
-46CF 1

4 5 2
4 5 I

3 3

(a) Five-Node Model (b) Five-Node Model Folded
Inside Out

S.25

0 1 0
0 

0

Time (Temperature

Conductors: a12

Node 3, Q15, Q a 151 2

Conductors:(c) Heat Input Conditions a25

HEAT INPUT

Variable a1 4

Node 1, Q1 = 50, 2= 150

Node 3, Q1 = 2, Q2 = 75

Nodes 2,4,5 Q .= 0 a2 3

(c) Heat Input Conditions a2 5

(d) Variable Conductors

FIGURE D--l. FIVE-NODE HOLLOW CUBE MODEL
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TABLE D-1

NOMINAL PARAMETER VALUES, FIVE-NODE MODEL, VARIABLE HEAT INPUT

Coefficients Value Coefficients Value Coefficients Value

a12 Figure D-1 ob15 2.0 x 10-10 (no dimen.) ob56 2.0 x 10-10 (no dimen.)

a14 " ob23 2.0 x 10-10 (no dimen.) C1  1.0 Btu/OF

a1 5  " ob24  2.0 x 10-10 (no dimen.) C2  1.0 Btu/OF

a23  " ob25 2.0 x 10-10 (no dimen.) C3  1.0 Btu/OF

a2 5  " ob26 2.0 x 10-10 (no dimen.) C4  1.0 Btu/OF-

a34 0.2 Btu/hr OF ab34  2.0 x 10-10 (no dimen.) C5  1.0 Btu/OF

a35 0.2 Btu/hr OF ob35  2.0 x 10-10 (no dimen.) Q1 Figure D-1

a45 0.2 Btu/hr OF ob45 2.0 x 10-10 (no dimen.) Q2 0 Btu/hr

bl12  2.0 x 10-10 (no dimen.) ab46  2.0 x 10-10 (no dimen.) Q3 Figure D-1

bl13  2.0 x 10-10 (no dimen.) abl 6  2.0 x 10-10 (no dimen.) Q4 0 Btu/hr

Obl4 2.0 x 10 - 10 (no dimen.) ob 3 6  2.0 x 10-10 (no dimen.) Q5 0 Btu/hr

n

n



RCD 3THEPMAL LPCS
RCD Q 5 NODE SAMPLE PRORLEM FOR SINDA
FND
BCD 3NODE DATA

1,h4,.*1,2,11.6,1ot3,3A.4ro,1. 2.1,1° p902.61.r
-6-460.o.0.

END

RELATIVE NODF NUMFERS ACTUAl. NOO F UME"S

1 THRU 6 1 2 3 4 5 6
NODE ANALYSIS... DIFFUSION = 5 ARITHMFTIC o0 RO'tfnRY 1. tOTAL

RCD 3CONDUCTOR DATA
SIV I,1,?PA?5s,KP,2,1.4,A25.2P2,3t1.5,AP5K23
SIV 4 ?,3,A25,K24.5 ?5,A25p 5

4,,,.2,7,3,5, .rtSI°P
GEN -MO4 ,11,n,2,tl,.F-9

-13,r1 , PE-9
GEN -14,4.1203,l..2E-O

-lP3,54o.2F-9e-10rQr#rE -9t-20@3#6o.PE-0
-2 ,?,5,r...-9,-22,,.6.PC-9,-23,5, .2E-4

J RELATIVE CONDUCTOR NUMnERS ACTUAL CONDUCTOR Nt.UMPFR

1 THPU 10 1 2 3 4 5 6 7 a a 1
11 THRl 20 11 1P 13 14 15 16 17 1R 19 P0
21 THRU 23 P1 22 23

CONDI'CTOR ANALYSIS... LINA - Ro nADIATION 1, rOTsL P3 CONNtCTIONS - P3

BCD 3CONSTANTS DATA
TIMEND. 2. p,OJTPUTn.1

" I 21.222r.2.235, .2,24 2,95 .P
EtrD
RCD 3APRAY DATA

on.r50.rlt. 150 ,o0.r N S TIVE VARYI1NG CURVE, SAW7tOTH
5r,0.n,0.75,1flO.,1.2!,END VARTARLE CONDUCTIVITY

ED
RCD 3FYECTITTON

DTMENSION X(5000) F
NDIM = 5000 F omf
NTH 0F -.-

CNFRDL S EXPLICIT FORWARD DrFFFRENCING USING LPCS o
END
PCD IVARIARLFS I n%

tIDEG1(TIMFNAQ,901) TIME VARYING 0 ON NODE I . .
MLTPLY( O o.5,03) S VARTARLE 0 nN NDEF 3 ALSO

PCD 3VARIABLES 2 0

FND ?
PCD 'OtlTPUIT CALLS

TPRINT
END
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E. CONTROL CARDS AND DECK SETUP

The SINDA program, although designed for use on a variety of

computers with a minimum of change, is presently operational only
on the UNIVAC-1108 EXEC-II system. The system control cards, deck
setup for the UNIVAC-1108 for the listed installations are reported

here. Included in the presentation are the various disk, drum and

tape unit designations and other pertinent information.

Machine Installation Page

UNIVAC-1108 Jacobi Computation Center E-2

Santa Monica, California

UNIVAC-1108 NASA/MSC, Houston, Texas E-4

E-1
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UNIVAC-1108 DECK SETUP JACOBI COMPUTATION CENTER, LOS ANGELES

The EXEC-II, CUR and FOTRAN V systems software for the UNIVAC-1108

are well suited for operation of the SINDA program. The two portions of,

the program, absolute Preprocessor and relocatable Variables, are contained

on magnetic tape as files one and two respectively. The user must instruct

the operator to mount the tape on drive F. The A symbol indicates a seven

and eight punch in card column one. The deck setup is as follows:

Cols 1 6 12

A RUN
ARX ASG F=SINDA

ARX ASG K

AN XQT CUR

IN F

AN XQT SINDA/ABS

+ blank card unless RECALL

- data deck through END OF DATA

AN XQT CUR

ERS

IN F

TRI F

AN FOR,K SINDA

AN FOR,K EXECTN

AN FOR,K VARBL1

AN FOR,K VARBL2

AN FOR,K OUTCAL

<- "load and go" subroutines with A

FOR cards

AN XQT SINDA

A FIN

NOTE: See the next page for tape usage requirements for various options.

It is recommended that the SINDA user acquaint himself with the

CUR operating system and the basics of FORTRAN V, particularly

logical IF's.
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UNIVAC-1108 TAPE USAGE JACOBI COMPUTATION CENTER, LOS ANGELES

UNIT FORTRAN PROGRAM
DESIGNATION NUMBER VARIABLE FUNCTION

DRUM(M) 15 LUT3 Copy of original problem data.

DRUM(D) 4 LUT1 Data number definitions.

F 9 --- SINDA production tape.

DRUM(I) 12 LB3D Data tape (original problem and all
parameter changes).

K 14 LB4P Program tape (contains generated
Fortran routines; SINDA, EXECTN,
VARBL1, VARBL2, OUTCAL).

DRUM 27 INTERN Data conversion scratch tape.

R 21 LUT7 Problem recall data tape.*

S 22 STAPE Problem store data tape.*

Reread 0 KRR 'Fortran reread unit.

* These tapes need not be assigned if the particular options are not used.
The STOREP option requires assigning and saving tapes 14 and 22. The
RECALL options requires assigning and mounting the above tapes on 14
and 21 respectively.
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UNIVAC-1108 DECK SETUP NASA HOUSTON

The EXEC-II, CUR and FORTRAN V systems software for the UNIVAC-1108
are well suited for operation of the SINDA program. The two portions of
the program, Preprocessor and Variables, are contained in binary on

magnetic tape as files one and two respectively. The user must instruct
the operator to mount the tape on drive F. The V symbol indicates a seven
and eight punch in the card column. The deck setup is as follows:

Col 1 6 12
V (RUN Card)
V (MSG Card)
VRX ASG F=- (See note below)
VRX ASG D,J,K,M
V XQT CUR

IN F
VN XQT SINDA/PREPRO

blank card unless RECALL

problem data deck through END OF DATA
V XQT CUR

ERS
IN F
TRI F

VN FOR,K SINDA
VN FOR,K EXECTN
VN FOR,K VARBL1
VN FOR,K VARBL2
VN FOR,K OUTCAL

+ "load and go" subroutines if any,
with V FOR

VN XQT SINDA
V EOF

It is recommended that the SINDA user acquaint himself with the CUR
operating system and the basics of FORTRAN V, in particular, logical IF

statements.

The operator instruction ticket accompanying the job must have the

SINDA production tape designated as input on F and request D, J, K, M
scratch tapes. This job's compatable with all the various 1108 systems
at MSC and is required to be run under the FORTRAN V system.

NOTE: The latest SINDA reel number may be obtained from R.L. Dotts,
ES551, X3538.
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UNIVAC-1108 TAPE USAGE NASA HOUSTON

UNIT FORTRAN PROGRAM
DESIGNATION NUMBER VARIABLE FUNCTION

DRUM(D) 4 LUT1 Data number definitions.

F 8 SINDA production tape.

DRUM(J) 12 LB3D Data tape (original problem and

all parameter changes).

K 13 LB4P Program tape (contains generated

Fortran routines; SINDA, EXECTN,
VARBL1, VARBL2, OUTCAL).

DRUM(M) 15 LUT3 Copy of original problem data.

DRUM(X) 27 INTERN Preprocessor scratch.

R 21 LUT7 Problem recall data tape.*

S 22 STAPE Problem store data tape.*

Reread 30 KRR Fortran reread unit.

* These tapes need not be assigned if the particular options are not used.
The STOREP option requires assigning and saving tapes 13 and 22. The

RECALL options requires assigning and mounting the above tapes on 13 and
21 respectively.
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